Multiple parasitoid species enhance top-down control, but parasitoid performance is context dependent
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
20-30690S
Grantová Agentura České Republiky
PubMed
35861633
DOI
10.1111/1365-2656.13782
Knihovny.cz E-zdroje
- Klíčová slova
- Drosophila, community composition, community modules, interaction modification, multiple predator effects,
- MeSH
- druhová specificita MeSH
- ekosystém MeSH
- interakce hostitele a parazita MeSH
- larva MeSH
- společenstvo MeSH
- sršňovití * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ecological communities are composed of many species, forming complex networks of interactions. Current environmental changes are altering the structure and species composition of ecological networks, which could modify interactions, either directly or indirectly. To predict changes in the functioning of communities, we need to understand whether species interactions are primarily driven by network structure (i.e. topology) or the specific identities of species (i.e. nodes). Yet, this partitioning of effects is challenging and thus rarely explored. Here we disentangled the influence of network structure and the identities of species on the outcome of consumer-resource interactions using a host-parasitoid system. We used four common community modules in host-parasitoid communities to represent network structure (i.e. host-parasitoid, exploitative competition, alternative host and a combination of exploitative competition and alternative host). We assembled nine different species combinations per community module in a laboratory experiment using a pool of three Drosophila hosts and three larval parasitoid species (Leptopilina sp., Ganaspis sp. and Asobara sp.). We compared host suppression and parasitoid performance across community modules and species assemblages to identify general effects linked to network structure and specific effects due to species community composition. We found that multiple parasitoid species enhanced host suppression due to sampling effect, weaker interspecific than intraspecific competition between parasitoids, and synergism. However, the effects of network structure on parasitoid performance were species specific and dependent on the identity of co-occurring species. Consequently, multiple parasitoid species generally strengthen top-down control, but the performance of the parasitoids depends on the identity of either the co-occurring parasitoid species, the alternative host species or both. Our results highlight the importance of preserving parasitoid diversity for ecosystem functioning and show that other effects depend on species community composition, and may therefore be altered by ongoing environmental changes.
Department of Life and Earth Sciences Georgia State University Perimeter College Clarkston Georgia
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Alexander, J. M., Diez, J. M., & Levine, J. M. (2015). Novel competitors shape species' responses to climate change. Nature, 525(7570), 515-518. https://doi.org/10.1038/nature14952
Bascompte, J., & Melián, C. J. (2005). Simple trophic modules for complex food webs. Ecology, 86(11), 2868-2873. https://doi.org/10.1890/05-0101
Bográn, C. E., Heinz, K. M., & Ciomperlik, M. A. (2002). Interspecific competition among insect parasitoids: Field experiments with whiteflies as hosts in cotton. Ecology, 83(3), 653-668. https://doi.org/10.1890/0012-9658(2002)083[0653:ICAIPF]2.0.CO;2
Boulétreau, M., & Wajnberg, E. (1986). Comparative responses of two sympatric parasitoid cynipids to the genetic and epigenetic variations of the larvae of their host, Drosophila melanogaster. Entomologia Experimentalis et Applicata, 41(2), 107-114. https://doi.org/10.1111/j.1570-7458.1986.tb00516.x
Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference. In Model Selection and Multimodel Inference. Springer. https://doi.org/10.1007/B97636
Carton, Y., & Kitano, H. (1981). Evolutionary relationships to parasitism by seven species of the Drosophila melanogaster subgroup. Biological Journal of the Linnean Society, 16(3), 227-241. https://doi.org/10.1111/j.1095-8312.1981.tb01849.x
Carton, Y., Poirié, M., & Nappi, A. J. (2008). Insect immune resistance to parasitoids. Insect Science, 15(1), 67-87. https://doi.org/10.1111/j.1744-7917.2008.00188.x
Cusumano, A., Peri, E., & Colazza, S. (2016). Interspecific competition/facilitation among insect parasitoids. In Current Opinion in Insect Science (Vol. 14, pp. 12-16). Elsevier Inc.. https://doi.org/10.1016/j.cois.2015.11.006
Finke, D. L., & Snyder, W. E. (2008). Niche partitioning increases resource exploitation by diverse communities. Science, 321(5895), 1488-1490. https://doi.org/10.1126/science.1160854
Fleury, F., Ris, N., Allemand, R., Fouillet, P., Carton, Y., & Boulétreau, M. (2004). Ecological and genetic interactions in Drosophila-parasitoids communities: a case study with D. melanogaster, D. simulans and their common Leptopilina parasitoids in south-eastern France. In P. Capy, P. Gibert, & I. Boussy (Eds.), Drosophila melanogaster, Drosophila simulans: So Similar, So Different (pp. 181-194). Springer.
Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W., & Holt, R. D. (2010). A framework for community interactions under climate change. Trends in Ecology & Evolution, 25(6), 325-331. https://doi.org/10.1016/j.tree.2010.03.002
Gurr, G. M., S. D. Wratten, & W. E. Snyder (Eds.) (2012). Biodiversity and insect pests: Key issues for sustainable management. John Wiley & Sons.
Godfray, H. C. J. (2004). Parasitoids. Current Biology, 14(12), R456. https://doi.org/10.1016/j.cub.2004.06.004
Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M., & Pywell, R. F. (2018). Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology, 99(8), 1771-1782. https://doi.org/10.1002/ecy.2378
Hartig, F., & Hartig, M. F. (2019). Package ‘DHARMa’. R Development Core Team.
Harvey, J. A., Poelman, E. H., & Tanaka, T. (2013). Intrinsic inter- and intraspecific competition in parasitoid wasps. Annual Review of Entomology, 58(1), 333-351. https://doi.org/10.1146/annurev-ento-120811-153622
Holt, R. D. (1997). Community modules. In A. C. Gange & V. K. Brown (Eds.), Multitrophic interactions in terrestrial ecosystems. Blackwell Science.
Jeffs, C. T., Terry, J. C. D., Higgie, M., Jandová, A., Konvičková, H., Brown, J. J., Lue, C. H., Schiffer, M., O'Brien, E. K., Bridle, J., Hrček, J., & Lewis, O. T. (2021). Molecular analyses reveal consistent food web structure with elevation in rainforest Drosophila - parasitoid communities. Ecography, 44(3), 403-413. https://doi.org/10.1111/ecog.05390
Jones, T. S., Godfray, H. C. J., & van Veen, F. J. F. (2009). Resource competition and shared natural enemies in experimental insect communities. Oecologia, 159(3), 627-635. https://doi.org/10.1007/s00442-008-1247-z
Kaartinen, R., & Roslin, T. (2013). Apparent competition leaves no detectable imprint on patterns of community composition: observations from a natural experiment. Ecological Entomology, 38(5), 522-530. https://doi.org/10.1111/een.12048
Kawatsu, K., Ushio, M., van Veen, F. J. F., & Kondoh, M. (2021). Are networks of trophic interactions sufficient for understanding the dynamics of multi-trophic communities? Analysis of a tri-trophic insect food-web time-series. Ecology Letters, 24(3), 543-552. https://doi.org/10.1111/ELE.13672
Kéfi, S., Berlow, E. L., Wieters, E. A., Navarrete, S. A., Petchey, O. L., Wood, S. A., Boit, A., Joppa, L. N., Lafferty, K. D., Williams, R. J., Martinez, N. D., Menge, B. A., Blanchette, C. A., Iles, A. C., & Brose, U. (2012). More than a meal… integrating non-feeding interactions into food webs. Ecology Letters, 15(4), 291-300. https://doi.org/10.1111/j.1461-0248.2011.01732.x
Lenth, R. V. (2018). Emmeans: Estimated marginal means, aka least-squares means. R Package Version.
Letourneau, D. K., Jedlicka, J. A., Bothwell, S. G., & Moreno, C. R. (2009). Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 40(1), 573-592. https://doi.org/10.1146/annurev.ecolsys.110308.120320
Lüdecke, D., Makowski, D., & Waggoner, P. (2019). Performance: Assessment of regression models performance. R Development Core Team.
Lue, C.-H., Buffington, M. L., Scheffer, S., Lewis, M., Elliott, T. A., Lindsey, A. R. I., Driskell, A., Jandova, A., Kimura, M. T., Carton, Y., Kula, R. R., Schlenke, T. A., Mateos, M., Govind, S., Varaldi, J., Guerrier, E., Giorgini, M., Wang, X., Hoelmer, K., … Hrcek, J. (2021). DROP: Molecular voucher database for identification of Drosophila parasitoids. Molecular Ecology Resources, 21, 2437-2454. https://doi.org/10.1111/1755-0998.13435
McPeek, M. A. (2019). Mechanisms influencing the coexistence of multiple consumers and multiple resources: resource and apparent competition. Ecological Monographs, 89(1), e01328. https://doi.org/10.1002/ecm.1328
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298(5594), 824-827. https://doi.org/10.1126/science.298.5594.824
Morris, R. J., Müller, C. B., & Godfray, H. C. J. (2001). Field experiments testing for apparent competition between primary parasitoids mediated by secondary parasitoids. Journal of Animal Ecology, 70(2), 301-309. https://doi.org/10.1111/j.1365-2656.2001.00495.x
Myers, J. H., Higgins, C., & Kovacs, E. (1989). How many insect species are necessary for the biological control of insects? Environmental Entomology, 18(4), 541-547. https://doi.org/10.1093/ee/18.4.541
Nouhaud, P., Mallard, F., Poupardin, R., Barghi, N., & Schlötterer, C. (2018). High-throughput fecundity measurements in Drosophila. Scientific Reports, 8(1), 4469. https://doi.org/10.1038/s41598-018-22777-w
Ode, P. J., Vyas, D. K., & Harvey, J. A. (2022). Extrinsic inter- and intraspecific competition in parasitoid wasps. Annual Review of Entomology, 67, 305-328. https://doi.org/10.1146/ANNUREV-ENTO-071421-073524
Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37-42. https://doi.org/10.1038/nature01286
Paterson, R. A., Dick, J. T. A., Pritchard, D. W., Ennis, M., Hatcher, M. J., & Dunn, A. M. (2015). Predicting invasive species impacts: A community module functional response approach reveals context dependencies. Journal of Animal Ecology, 84(2), 453-463. https://doi.org/10.1111/1365-2656.12292
Pedersen, B. S., & Mills, N. J. (2004). Single vs. multiple introduction in biological control: The roles of parasitoid efficiency, antagonism and niche overlap. Journal of Applied Ecology, 41(5), 973-984. https://doi.org/10.1111/j.0021-8901.2004.00953.x
Poelman, E. H., Gols, R., Gumovsky, A. V., Cortesero, A. M., Dicke, M., & Harvey, J. A. (2014). Food plant and herbivore host species affect the outcome of intrinsic competition among parasitoid larvae. Ecological Entomology, 39(6), 693-702. https://doi.org/10.1111/een.12150
R Core Team. (2021). R: The R project for statistical computing. https://www.r-project.org/
Rip, J. M. K., McCann, K. S., Lynn, D. H., & Fawcett, S. (2010). An experimental test of a fundamental food web motif. Proceedings of the Royal Society B: Biological Sciences, 277(1688), 1743-1749. https://doi.org/10.1098/rspb.2009.2191
Schmitz, O. J. (2007). Predator diversity and trophic interactions. Ecology, 88(10), 2415-2426. https://doi.org/10.1890/06-0937.1
Sentis, A., Gémard, C., Jaugeon, B., & Boukal, D. S. (2017). Predator diversity and environmental change modify the strengths of trophic and nontrophic interactions. Global Change Biology, 23(7), 2629-2640. https://doi.org/10.1111/gcb.13560
Siddon, C. E., & Witman, J. D. (2004). Behavioral indirect interactions: Multiple predator effects and prey switching in the rocky subtidal. Ecology, 85(11), 2938-2945. https://doi.org/10.1890/03-0519
Sih, A., Englund, G., & Wooster, D. (1998). Emergent impacts of multiple predators on prey. Trends in Ecology & Evolution, 13(9), 350-355. https://doi.org/10.1016/S0169-5347(98)01437-2
Snyder, G. B., Finke, D. L., & Snyder, W. E. (2008). Predator biodiversity strengthens aphid suppression across single- and multiple-species prey communities. Biological Control, 44(1), 52-60. https://doi.org/10.1016/J.BIOCONTROL.2007.09.006
Snyder, W. E., Snyder, G. B., Finke, D. L., & Straub, C. S. (2006). Predator biodiversity strengthens herbivore suppression. Ecology Letters, 9(7), 789-796. https://doi.org/10.1111/j.1461-0248.2006.00922.x
Thierry, M. (2021). Data from: Multiple parasitoid species enhance top-down control, but parasitoid performance is context-dependent. Zenodo. https://doi.org/10.5281/zenodo.6122978
Thierry, M., Hrček, J., & Lewis, O. T. (2019). Mechanisms structuring host-parasitoid networks in a global warming context: A review. Ecological Entomology, 44(5), 581-592. https://doi.org/10.1111/een.12750
Thierry, M., Pardikes, N. A., Rosenbaum, B., Ximénez-Embún, M. G., & Hrček, J. (2021). Warming decreases host survival with multiple parasitoids, but parasitoid performance also decreases. BioRxiv, 2021(8), 24.457463. https://doi.org/10.1101/2021.08.24.457463
Tylianakis, J. M., Tscharntke, T., & Lewis, O. T. (2007). Habitat modification alters the structure of tropical host-parasitoid food webs. Nature, 445(7124), 202-205. https://doi.org/10.1038/nature05429
van Veen, F. J. F., van Holland, P. D., & Godfray, H. C. J. (2005). Stable coexistence in insect communities due to density- and trait-mediated indirect effects. Ecology, 86(12), 3182-3189. https://doi.org/10.1890/04-1590
Wajnberg, E., Scott, J. K., & Quimby, P. C. (2001). Evaluating Indirect Ecological Effects of Biological Control. CABI. https://books.google.fr/books?hl=fr&lr=&id=Nrtmz5jO3D0C&oi=fnd&pg=PR11&dq=Evaluating+Indirect+Ecological+Effects+of+Biological+Control&ots=C6_eRGHMi0&sig=c3Q8tSRCnLMOI2REDWrkI2JnOM8#v=onepage&q=Evaluating:IndirectEcologicalEffectsofBiologicalControl
Werner, E. E., & Peacor, S. D. (2003). A review of trait-mediated indirect interactions in ecological communities. Ecology, 84(5), 1083-1100. https://doi.org/10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2
Wong, M. K. L., Guénard, B., & Lewis, O. T. (2019). Trait-based ecology of terrestrial arthropods. Biological Reviews, 94(3), 999-1022. https://doi.org/10.1111/brv.12488
Woodcock, B. A., & Heard, M. S. (2011). Disentangling the effects of predator hunting mode and habitat domain on the top-down control of insect herbivores. Journal of Animal Ecology, 80(2), 495-503. https://doi.org/10.1111/j.1365-2656.2010.01790.x
Xu, H. Y., Yang, N. W., Duan, M., & Wan, F. H. (2016). Functional response, host stage preference and interference of two whitefly parasitoids. Insect Science, 23(1), 134-144. https://doi.org/10.1111/1744-7917.12186