Riluzole-Rasagiline Hybrids: Toward the Development of Multi-Target-Directed Ligands for Amyotrophic Lateral Sclerosis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35868251
PubMed Central
PMC9354084
DOI
10.1021/acschemneuro.2c00261
Knihovny.cz E-zdroje
- Klíčová slova
- ALS, MAO, MTDLs, Polypharmacology, benzothiazoles, rasagiline, riluzole,
- MeSH
- amyotrofická laterální skleróza * farmakoterapie MeSH
- indany MeSH
- lidé MeSH
- ligandy MeSH
- neuroprotektivní látky * farmakologie terapeutické užití MeSH
- riluzol farmakologie terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- indany MeSH
- ligandy MeSH
- neuroprotektivní látky * MeSH
- rasagiline MeSH Prohlížeč
- riluzol MeSH
Polypharmacology is a new trend in amyotrophic lateral sclerosis (ALS) therapy and an effective way of addressing a multifactorial etiology involving excitotoxicity, mitochondrial dysfunction, oxidative stress, and microglial activation. Inspired by a reported clinical trial, we converted a riluzole (1)-rasagiline (2) combination into single-molecule multi-target-directed ligands. By a ligand-based approach, the highly structurally integrated hybrids 3-8 were designed and synthesized. Through a target- and phenotypic-based screening pipeline, we identified hit compound 6. It showed monoamine oxidase A (MAO-A) inhibitory activity (IC50 = 6.9 μM) rationalized by in silico studies as well as in vitro brain permeability. By using neuronal and non-neuronal cell models, including ALS-patient-derived cells, we disclosed for 6 a neuroprotective/neuroinflammatory profile similar to that of the parent compounds and their combination. Furthermore, the unexpected MAO inhibitory activity of 1 (IC50 = 8.7 μM) might add a piece to the puzzle of its anti-ALS molecular profile.
Center for Neuroscience and Cell Biology University of Coimbra 3004 504 Coimbra Portugal
Department of Chemical and Pharmaceutical Sciences University of Trieste 34127 Trieste Italy
Department of Pharmaceutical and Pharmacological Sciences University of Padova 35131 Padova Italy
Mitotag Lda Biocant Park 3060 197 Cantanhede Portugal
Research Unit for Sport and Physical Activity University of Coimbra 3040 248 Coimbra Portugal
Zobrazit více v PubMed
Kiernan M. C.; Vucic S.; Cheah B. C.; Turner M. R.; Eisen A.; Hardiman O.; Burrell J. R.; Zoing M. C. Amyotrophic Lateral Sclerosis. Lancet 2011, 377 (9769), 942–955. 10.1016/S0140-6736(10)61156-7. PubMed DOI
Martinez A.; Palomo Ruiz M. D.; Perez D. I.; Gil C. Drugs In Clinical Development For The Treatment Of Amyotrophic Lateral Sclerosis. Expert Opin. Invest. Drugs 2017, 26 (4), 403–414. 10.1080/13543784.2017.1302426. PubMed DOI
Mullard A. ALS Antisense Drug Falters In Phase III. Nat. Rev. Drug Discovery 2021, 20 (12), 883–885. 10.1038/d41573-021-00181-w. PubMed DOI
Martín-Cámara O.; Arribas M.; Wells G.; Morales-Tenorio M.; Martín-Requero Á.; Porras G.; Martínez A.; Giorgi G.; López-Alvarado P.; Lastres-Becker I.; et al. Multitarget Hybrid Fasudil Derivatives As A New Approach To The Potential Treatment Of Amyotrophic Lateral Sclerosis. J. Med. Chem. 2022, 65 (3), 1867–1882. 10.1021/acs.jmedchem.1c01255. PubMed DOI PMC
Cavalli A.; Bolognesi M. L.; Minarini A.; Rosini M.; Tumiatti V.; Recanatini M.; Melchiorre C. Multi-Target-Directed Ligands To Combat Neurodegenerative Diseases. J. Med. Chem. 2008, 51 (3), 347–372. 10.1021/jm7009364. PubMed DOI
Dhasmana S.; Dhasmana A.; Narula A. S.; Jaggi M.; Yallapu M. M.; Chauhan S. C. The Panoramic View Of Amyotrophic Lateral Sclerosis: A Fatal Intricate Neurological Disorder. Life Sci. 2022, 288, 120156.10.1016/j.lfs.2021.120156. PubMed DOI
Waibel S.; Reuter A.; Malessa S.; Blaugrund E.; Ludolph A. C. Rasagiline Alone And In Combination With Riluzole Prolongs Survival In An ALS Mouse Model. J. Neurol. 2004, 251 (9), 1080–1084. 10.1007/s00415-004-0481-5. PubMed DOI
Ludolph A. C.; Schuster J.; Dorst J.; Dupuis L.; Dreyhaupt J.; Weishaupt J. H.; Kassubek J.; Weiland U.; Petri S.; Meyer T.; et al. Safety And Efficacy Of Rasagiline As An Add-On Therapy To Riluzole In Patients With Amyotrophic Lateral Sclerosis: A Randomised, Double-Blind, Parallel-Group, Placebo-Controlled, Phase 2 Trial. Lancet Neurol. 2018, 17 (8), 681–688. 10.1016/S1474-4422(18)30176-5. PubMed DOI
Maruyama W.; Youdim M. B.; Naoi M. Antiapoptotic Properties Of Rasagiline, N-Propargylamine-1(R)-Aminoindan, And Its Optical (S)-Isomer, TV1022. Ann. N.Y. Acad. Sci. 2001, 939, 320–329. 10.1111/j.1749-6632.2001.tb03641.x. PubMed DOI
Dong X. X.; Wang Y.; Qin Z. H. Molecular Mechanisms Of Excitotoxicity And Their Relevance To Pathogenesis Of Neurodegenerative Diseases. Acta Pharmacol. Sin. 2009, 30 (4), 379–387. 10.1038/aps.2009.24. PubMed DOI PMC
Sala G.; Arosio A.; Conti E.; Beretta S.; Lunetta C.; Riva N.; Ferrarese C.; Tremolizzo L. Riluzole Selective Antioxidant Effects In Cell Models Expressing Amyotrophic Lateral Sclerosis Endophenotypes. Clin. Psychopharmacol. Neurosci. 2019, 17 (3), 438–442. 10.9758/cpn.2019.17.3.438. PubMed DOI PMC
Prati F.; Cavalli A.; Bolognesi M. Navigating The Chemical Space Of Multitarget-Directed Ligands: From Hybrids To Fragments In Alzheimer’s Disease. Molecules 2016, 21 (4), 466.10.3390/molecules21040466. PubMed DOI PMC
Sweeney J. B.; Rattray M.; Pugh V.; Powell L. A. Riluzole-Triazole Hybrids As Novel Chemical Probes For Neuroprotection In Amyotrophic Lateral Sclerosis. ACS Med. Chem. Lett. 2018, 9 (6), 552–556. 10.1021/acsmedchemlett.8b00103. PubMed DOI PMC
Mignani S.; Majoral J. P.; Desaphy J. F.; Lentini G. From Riluzole To Dexpramipexole Via Substituted-Benzothiazole Derivatives For Amyotrophic Lateral Sclerosis Disease Treatment: Case Studies. Molecules 2020, 25 (15), 332010.3390/molecules25153320. PubMed DOI PMC
Bar-Am O.; Amit T.; Youdim M. B.; Weinreb O. Neuroprotective And Neurorestorative Potential Of Propargylamine Derivatives In Ageing: Focus On Mitochondrial Targets. J. Neural Transm. 2016, 123 (2), 125–135. 10.1007/s00702-015-1395-3. PubMed DOI
Wager T. T.; Hou X.; Verhoest P. R.; Villalobos A. Moving Beyond Rules: The Development Of A Central Nervous System Multiparameter Optimization (CNS MPO) Approach To Enable Alignment Of Druglike Properties. ACS Chem. Neurosci. 2010, 1 (6), 435–449. 10.1021/cn100008c. PubMed DOI PMC
Jordan A. D.; Luo C.; Reitz A. B. Efficient Conversion Of Substituted Aryl Thioureas To 2-Aminobenzothiazoles Using Benzyltrimethylammonium Tribromide. J. Org. Chem. 2003, 68 (22), 8693–8696. 10.1021/jo0349431. PubMed DOI
Pansarasa O.; Bordoni M.; Dufruca L.; Diamanti L.; Sproviero D.; Trotti R.; Bernuzzi S.; La Salvia S.; Gagliardi S.; Ceroni M.; Cereda C. Lymphoblastoid Cell Lines As A Model To Understand Amyotrophic Lateral Sclerosis Disease Mechanisms. Dis. Models Mech. 2018, 11 (3), dmm03162510.1242/dmm.031625. PubMed DOI PMC
Di L.; Kerns E. H.; Fan K.; Mcconnell O. J.; Carter G. T. High Throughput Artificial Membrane Permeability Assay For Blood-Brain Barrier. Eur. J. Med. Chem. 2003, 38 (3), 223–232. 10.1016/S0223-5234(03)00012-6. PubMed DOI
Statland J. M.; Moore D.; Wang Y.; Walsh M.; Mozaffar T.; Elman L.; Nations S. P.; Mitsumoto H.; Fernandes J. A.; Saperstein D.; Hayat G.; Herbelin L.; Karam C.; Katz J.; Wilkins H. M.; Agbas A.; Swerdlow R. H.; Santella R. M.; Dimachkie M. M.; Barohn R. J. Rasagiline For Amyotrophic Lateral Sclerosis: A Randomized, Controlled Trial. Muscle Nerve 2019, 59 (2), 201–207. 10.1002/mus.26335. PubMed DOI PMC
Mandel S.; Weinreb O.; Amit T.; Youdim M. B. Mechanism Of Neuroprotective Action Of The Anti-Parkinson Drug Rasagiline And Its Derivatives. Brain Res. Rev. 2005, 48 (2), 379–387. 10.1016/j.brainresrev.2004.12.027. PubMed DOI
Binda C.; Hubálek F.; Li M.; Herzig Y.; Sterling J.; Edmondson D. E.; Mattevi A. Crystal Structures Of Monoamine Oxidase B In Complex With Four Inhibitors Of The N-Propargylaminoindan Class. J. Med. Chem. 2004, 47 (7), 1767–1774. 10.1021/jm031087c. PubMed DOI
Salado I. G.; Redondo M.; Bello M. L.; Perez C.; Liachko N. F.; Kraemer B. C.; Miguel L.; Lecourtois M.; Gil C.; Martinez A.; Perez D. I. Protein Kinase CK-1 Inhibitors As New Potential Drugs For Amyotrophic Lateral Sclerosis. J. Med. Chem. 2014, 57 (6), 2755–2772. 10.1021/jm500065f. PubMed DOI PMC
Martínez-González L.; Rodríguez-Cueto C.; Cabezudo D.; Bartolomé F.; Andrés-Benito P.; Ferrer I.; Gil C.; Martín-Requero Á.; Fernández-Ruiz J.; Martínez A.; de Lago E. Motor Neuron Preservation And Decrease Of In Vivo TDP-43 Phosphorylation By Protein CK-1δ Kinase Inhibitor Treatment. Sci. Rep. 2020, 10 (1), 4449.10.1038/s41598-020-61265-y. PubMed DOI PMC
Bissaro M.; Federico S.; Salmaso V.; Sturlese M.; Spalluto G.; Moro S. Targeting Protein Kinase CK1δ With Riluzole: Could It Be One Of The Possible Missing Bricks To Interpret Its Effect In The Treatment Of ALS From A Molecular Point Of View?. ChemMedChem 2018, 13 (24), 2601–2605. 10.1002/cmdc.201800632. PubMed DOI
Allen S. P.; Duffy L. M.; Shaw P. J.; Grierson A. J. Altered Age-Related Changes In Bioenergetic Properties And Mitochondrial Morphology In Fibroblasts From Sporadic Amyotrophic Lateral Sclerosis Patients. Neurobiol. Aging 2015, 36 (10), 2893–2903. 10.1016/j.neurobiolaging.2015.07.013. PubMed DOI
Lastres-Becker I.; Porras G.; Arribas-Blazquez M.; Maestro I.; Borrego-Hernandez D.; Boya P.; Cerdan S.; Garcia-Redondo A.; Martinez A.; Martin-Requero A. Molecular Alterations In Sporadic And SOD1-ALS Immortalized Lymphocytes: Towards A Personalized Therapy. Int. J. Mol. Sci. 2021, 22 (6), 300710.3390/ijms22063007. PubMed DOI PMC
Cunha-Oliveira T.; Silva D. F.; Segura L.; Baldeiras I.; Marques R.; Rosenstock T.; Oliveira P. J.; Silva F. S. G. Redox Profiles Of Amyotrophic Lateral Sclerosis Lymphoblasts With Or Without Known SOD1 Mutations. Eur. J. Clin. Invest. 2022, 10.1111/eci.13798. PubMed DOI
Silva F. S. G.; Starostina I. G.; Ivanova V. V.; Rizvanov A. A.; Oliveira P. J.; Pereira S. P. Determination Of Metabolic Viability And Cell Mass Using A Tandem Resazurin/Sulforhodamine B Assay. Curr. Protoc. Toxicol. 2016, 68, 2.24.1–22.24.15. 10.1002/cptx.1. PubMed DOI
Yi H.; Maruyama W.; Akao Y.; Takahashi T.; Iwasa K.; Youdim M. B.; Naoi M. N-Propargylamine Protects SH-SY5Y Cells From Apoptosis Induced By An Endogenous Neurotoxin, N-Methyl-(R)-Salsolinol, Through Stabilization Of Mitochondrial Membrane And Induction Of Anti-Apoptotic Bcl-2. J. Neural Transm. 2006, 113 (1), 21–32. 10.1007/s00702-005-0299-z. PubMed DOI
Tatton W.; Chalmers-Redman R.; Tatton N. Neuroprotection By Deprenyl And Other Propargylamines: Glyceraldehyde-3-Phosphate Dehydrogenase Rather Than Monoamine Oxidase B. J. Neural Transm. 2003, 110 (5), 509–515. 10.1007/s00702-002-0827-z. PubMed DOI
Koh J. Y.; Kim D. K.; Hwang J. Y.; Kim Y. H.; Seo J. H. Antioxidative And Proapoptotic Effects Of Riluzole On Cultured Cortical Neurons. J. Neurochem. 1999, 72 (2), 716–723. 10.1046/j.1471-4159.1999.0720716.x. PubMed DOI
Anzini M.; Chelini A.; Mancini A.; Cappelli A.; Frosini M.; Ricci L.; Valoti M.; Magistretti J.; Castelli L.; Giordani A.; Makovec F.; Vomero S. Synthesis And Biological Evaluation Of Amidine, Guanidine, And Thiourea Derivatives Of 2-Amino(6-Trifluoromethoxy)Benzothiazole As Neuroprotective Agents Potentially Useful In Brain Diseases. J. Med. Chem. 2010, 53 (2), 734–744. 10.1021/jm901375r. PubMed DOI
Criddle D. N.; Gillies S.; Baumgartner-Wilson H. K.; Jaffar M.; Chinje E. C.; Passmore S.; Chvanov M.; Barrow S.; Gerasimenko O. V.; Tepikin A. V.; Sutton R.; Petersen O. H. Menadione-Induced Reactive Oxygen Species Generation Via Redox Cycling Promotes Apoptosis Of Murine Pancreatic Acinar Cells. J. Biol. Chem. 2006, 281 (52), 40485–40492. 10.1074/jbc.M607704200. PubMed DOI
Sala G.; Arosio A.; Conti E.; Beretta S.; Lunetta C.; Riva N.; Ferrarese C.; Tremolizzo L. Riluzole Selective Antioxidant Effects in Cell Models Expressing Amyotrophic Lateral Sclerosis Endophenotypes. Clin. Psychopharmacol. Neurosci. 2019, 17 (3), 438–442. 10.9758/cpn.2019.17.3.438. PubMed DOI PMC
Dessi F.; Benari Y.; Charriautmarlangue C. Riluzole Prevents Anoxic Injury In Cultured Cerebellar Granule Neurons. Eur. J. Pharmacol. 1993, 250 (2), 325–328. 10.1016/0014-2999(93)90398-2. PubMed DOI
Bonneh-Barkay D.; Ziv N.; Finberg J. Characterization Of The Neuroprotective Activity Of Rasagiline In Cerebellar Granule Cells. Neuropharmacology 2005, 48 (3), 406–416. 10.1016/j.neuropharm.2004.10.016. PubMed DOI
Liu J.; Wang F. Role of Neuroinflammation in Amyotrophic Lateral Sclerosis: Cellular Mechanisms and Therapeutic Implications. Front. Immunol. 2017, 8, 100510.3389/fimmu.2017.01005. PubMed DOI PMC
Henkel J.; Beers D.; Zhao W.; Appel S. Microglia In ALS: The Good, The Bad, And The Resting. J. NeuroImmune Pharmacol. 2009, 4 (4), 389–398. 10.1007/s11481-009-9171-5. PubMed DOI
Trudler D.; Weinreb O.; Mandel S. A.; Youdim M. B.; Frenkel D. DJ-1 Deficiency Triggers Microglia Sensitivity To Dopamine Toward A Pro-Inflammatory Phenotype That Is Attenuated By Rasagiline. J. Neurochem. 2014, 129 (3), 434–447. 10.1111/jnc.12633. PubMed DOI
Hassanzadeh K.; Roshangar L.; Habibi-asl B.; Farajnia S.; Izadpanah E.; Nemati M.; Arasteh M.; Mohammadi S. Riluzole Prevents Morphine-Induced Apoptosis In Rat Cerebral Cortex. Pharmacol. Rep. 2011, 63 (3), 697–707. 10.1016/S1734-1140(11)70581-3. PubMed DOI