Structure of Zinc and Nickel Histidine Complexes in Solution Revealed by Molecular Dynamics and Raman Optical Activity
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
22-04669S
Grantová Agentura České Republiky
22-15374S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000729
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018140
Ministerstvo Školství, Mládeže a Tělovýchovy
- Keywords
- Raman optical activity, Raman spectroscopy, density functional calculations, histidine, metal complexes, molecular dynamics,
- MeSH
- Histidine MeSH
- Coordination Complexes * MeSH
- Nickel MeSH
- Optical Rotation MeSH
- Spectrum Analysis, Raman MeSH
- Molecular Dynamics Simulation * MeSH
- Zinc MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Histidine MeSH
- Coordination Complexes * MeSH
- Nickel MeSH
- Zinc MeSH
The histidine residue has an exceptional affinity for metals, but solution structure of its complexes are difficult to study. For zinc and nickel complexes, Raman and Raman optical activity (ROA) spectroscopy methods to investigate the link between spectral shapes and the geometry were used. The spectra were recorded and interpreted on the basis of ionic equilibria, molecular dynamics, ab initio molecular dynamics, and density functional theory. For zwitterionic histidine the dominant tautomer was determined by the decomposition of experimental spectra into calculated subspectra. An octahedral structure was found to prevail for the ZnHis2 complex in solution, in contrast to a tetrahedral arrangement in the crystal phase. The solution geometry of NiHis2 is more similar to the octahedral structure found by X-ray. The Raman and ROA structural determinations of metal complexes are dependent on extensive computations, but reveal unique information about the studied systems.
Department of Optics Palacký University 17 listopadu 12 771 46 Olomouc Czech Republic
Faculty of Mathematics and Physics Charles University Ke Karlovu 5 121 16 Prague Czech Republic
See more in PubMed
L. Huo, A. J. Fielding, Y. Chen, T. Li, H. Iwaki, J. P. Hosler, L. Chen, Y. Hasegawa, L. Que, Jr., A. Liu, Biochemistry 2012, 51, 5811-5821.
J. G. Mesu, T. Visser, F. Soulimani, E. E. van Faassen, P. de Peinder, A. M. Beale, B. M. Weckhuysen, Inorg. Chem. 2006, 45, 1960-1971.
J. A. Vila, Y. A. Arnautovaa, Y. Vorobjevc, H. A. Scheragaa, Proc. Natl. Acad. Sci. USA 2011, 108, 5602-5607.
E. Deplazes, W. vanBronswijk, F. Zhu, L. D. Barron, S. Ma, L. A. Nafie, K. J. Jalkanen, Theor. Chem. Acc. 2008, 119, 155-176.
S. Cardamone, B. A. Caine, E. Blanch, M. G. Lizio, P. L. A. Popelier, Phys. Chem. Chem. Phys. 2016, 18, 27377-27389.
M. Buděšínský, P. Daněček, L. Bednárová, J. Kapitán, V. Baumruk, P. Bouř, J. Phys. Chem. A 2008, 112, 8633-8640;
J. Jungwirth, J. Šebestík, M. Šafařík, J. Kapitán, P. Bouř, J. Phys. Chem. B 2017, 121, 8956-8964.
W. F. Reynolds, I. R. Peat, M. H. Freedman, J. R. Lyerla, J. Am. Chem. Soc. 1973, 95, 328-331.
F. Pfluger, B. Hernández, M. Ghomi, J. Phys. Chem. B 2010, 114, 9072-9083.
L. Rulíšek, J. Vondrášek, J. Inorg. Biochem. 1998, 71, 115-127;
L. Rulíšek, Z. Havlas, J. Am. Chem. Soc. 2000, 122, 10428-10439.
R. N. V. Krishna Deepak, R. Sankararamakrishnan, Biochemistry 2016, 55, 3774-3783.
M. M. Harding, S. J. Coel, Acta Crystallogr. 1963, 16, 643-650.
K. A. Fraser, M. M. Harding, J. Chem. Soc. A 1967, 415-420.
J. Haesler, I. Schindelholz, E. Riguet, C. G. Bochet, W. Hug, Nature 2007, 446, 526-529;
X. Li, K. H. Hopmann, J. Hudecová, J. Isaksson, J. Novotná, W. Stensen, V. Andrushchenko, M. Urbanová, J. S. Svendsen, P. Bouř, K. Ruud, J. Phys. Chem. A 2013, 117, 1721-1736.
E. W. Blanch, I. H. McColl, L. Hecht, K. Nielsen, L. D. Barron, Vib. Spectrosc. 2004, 35, 87-92 ;
L. D. Barron, E. W. Blanch, L. Hecht, Adv. Protein Chem. 2002, 62, 51-90;
J. Kessler, J. Kapitán, P. Bouř, J. Phys. Chem. Lett. 2015, 6, 3314-3319;
C. Shen, M. Srebro-Hooper, T. Weymuth, F. Krausbeck, J. T. L. Navarrete, F. J. Ramírez, B. Nieto-Ortega, J. Casado, M. Reiher, J. Autschbach, J. Crassous, Chem. Eur. J. 2018, 24, 15067-15079;
V. Palivec, V. Kopecký, P. Jungwirth, P. Bouř, J. Kaminský, H. Martinez-Seara, Phys. Chem. Chem. Phys. 2020, 22, 1983-1993.
S. Luber, M. Reiher, ChemPhysChem 2010, 11, 1876-1887;
S. Luber, M. Reiher, Chem. Phys. 2008, 346, 212-223;
G. Zając, P. Bouř, J. Phys. Chem. B 2022, 126, 355-367.
L. D. Barron, Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge, UK, 2004.
B. Dolenský, J. Kroulík, V. Král, J. L. Sessler, H. Dvořáková, P. Bouř, M. Bernátková, C. Bucher, V. Lynch, J. Am. Chem. Soc. 2004, 126, 13714-13722.
S. Martusevičius, G. Niaura, Z. Talaikyte, V. Razumas, Vib. Spectrosc. 1996, 10, 271-280;
J. G. Mesu, T. Visser, F. Soulimani, B. M. Weckhuysen, Vib. Spectrosc. 2005, 39, 114-125.
J. Palacký, P. Mojzeš, J. Bok, J. Raman Spectrosc. 2011, 42, 1528-1539.
R. M. Smith, A. E. Martell, Critical stability constants, Plenum Press, New York-London, 1975;
N. N. Vlasova, L. P. Golovkova, Colloid J. 2004, 66, 657-662.
T. Miura, T. Satoh, A. Hori-i, H. Takeuchi, J. Raman Spectrosc. 1998, 29, 41-47.
S. Yamamoto, S. Ishiro, J. Kessler, P. Bouř, Phys. Chem. Chem. Phys. 2021, 23, 26501-26509.
P. Michal, R. Čelechovský, M. Dudka, J. Kapitán, M. Vůjtek, M. Berešová, J. Šebestík, K. Thangavel, P. Bouř, J. Phys. Chem. B 2019, 123, 2147-2156.
P. Bouř, D. Michalík, J. Kapitán, J. Chem. Phys. 2005, 122, 144501;
K. H. Hopmann, K. Ruud, M. Pecul, A. Kudelski, M. Dračínský, P. Bouř, J. Phys. Chem. B 2011, 115, 4128-4137;
J. Hudecová, J. Horníček, M. Buděšínský, J. Šebestík, M. Šafařík, G. Zhang, T. A. Keiderling, P. Bouř, ChemPhysChem 2012, 13, 2748-2760.
P. Bouř, T. A. Keiderling, J. Chem. Phys. 2003, 119, 11253-11262.
J. Šugar, P. Bouř, J. Raman Spectrosc. 2016, 47, 1298-1303.
T. Wu, J. Kapitán, P. Bouř, J. Phys. Chem. Lett. 2022, 13, 3873-3877.
S. Yamamoto, X. Li, K. Ruud, P. Bouř, J. Chem. Theory Comput. 2012, 8, 977-985.
B. Müller, Eawag: Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum, 2015.
Y. Altun, F. Koseoglu, J. Solution Chem. 2005, 34, 213-231.
E. R. Malinowski, Factor Analysis in Chemistry, 2 ed., Wiley, New York, 1991.
T. Wu, G. Li, J. Kapitán, J. Kessler, Y. Xu, P. Bouř, Angew. Chem. Int. Ed. 2020, 59, 21895-21898.
P. Eilers, H. Boelens, in Leiden University Medical Centre report, 2005.
D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham, S. Debolt, D. M. Ferguson, G. Seibel, P. A. Kollman, Comp. Phys. Commun. 1995, 91, 1-41.
S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, J. M. Rosenberg, J. Comput. Chem. 1992, 13, 1011-1021.
P. Bouř, T. A. Keiderling, J. Chem. Phys. 2002, 117, 4126-4132.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford, CT, 2016.
G. Scalmani, M. J. Frisch, J. Chem. Phys. 2010, 132, 114110.
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 2005, 220, 567-570.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
D. Vanderbilt, Phys. Rev. B 1990, 41, 7892-7895.
H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188-5192.
P. L. Polavarapu, C. L. Covington, Chirality 2014, 26, 539-552.