Application of dry olive residue-based biochar in combination with arbuscular mycorrhizal fungi enhances the microbial status of metal contaminated soils

. 2022 Jul 25 ; 12 (1) : 12690. [epub] 20220725

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35879523
Odkazy

PubMed 35879523
PubMed Central PMC9314387
DOI 10.1038/s41598-022-17075-5
PII: 10.1038/s41598-022-17075-5
Knihovny.cz E-zdroje

Biochar made-up of dry olive residue (DOR), a biomass resulting from the olive oil extraction industry, has been proposed to be used as a reclamation agent for the recovery of metal contaminated soils. The aim of the present study was to investigate whether the soil application of DOR-based biochar alone or in combination with arbuscular mycorrhizal fungi (AMF) leads to an enhancement in the functionality and abundance of microbial communities inhabiting metal contaminated soils. To study that, a greenhouse microcosm experiment was carried out, where the effect of the factors (i) soil application of DOR-based biochar, (ii) biochar pyrolysis temperature (considering the variants 350 and 500 °C), (iii) soil application dose of biochar (2 and 5%), (iv) soil contamination level (slightly, moderately and highly polluted), (v) soil treatment time (30, 60 and 90 days) and (vi) soil inoculation with Funneliformis mosseae (AM fungus) on β-glucosidase and dehydrogenase activities, FA (fatty acid)-based abundance of soil microbial communities, soil glomalin content and AMF root colonization rates of the wheat plants growing in each microcosm were evaluated. Biochar soil amendment did not stimulate enzyme activities but increased microbial abundances. Dehydrogenase activity and microbial abundances were found to be higher in less contaminated soils and at shorter treatment times. Biochar pyrolysis temperature and application dose differently affected enzyme activities, but while the first factor did not have a significant effect on glucosidase and dehydrogenase, a higher biochar dose resulted in boosted microbial abundances. Soil inoculation with F. mosseae favored the proliferation of soil AMF community and increased soil glomalin content as well as rates of AMF root colonization. This factor also interacted with many of the others evaluated to significantly affect soil enzyme activities, microbial abundances and AMF community. Our results indicate that the application of DOR-based biochar along with AMF fungi is an appropriate approach to improve the status of microbial communities in soils with a moderate metal contamination at short-term.

Zobrazit více v PubMed

Gall JE, Boyd RS. Transfer of heavy metals through terrestrial food webs: A review. Environ. Monit. Assess. 2015;187:201. doi: 10.1007/s10661-015-4436-3. PubMed DOI

Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol. Environ. Saf. 2007;67:75–81. doi: 10.1016/j.ecoenv.2006.03.007. PubMed DOI

Liang J, et al. Responses of enzymatic activity and microbial communities to biochar/compost amendment in sulfamethoxazole polluted wetland soil. J. Hazard. Mater. 2020;385:121533. doi: 10.1016/j.jhazmat.2019.121533. PubMed DOI

Kandeler F, Kampichler C. Influence of heavy metals on the functional diversity of soil microbial communities. Biol. Fertil. Soils. 1996;23:299–306. doi: 10.1007/BF00335958. DOI

Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklinska M. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl. Soil Ecol. 2013;64:7–14. doi: 10.1016/j.apsoil.2012.11.004. DOI

Ye C, Li S, Zhang Y, Tong X, Zhang Q. Assessing heavy metal pollution in the water level fluctuation zone of China’s Three Gorges Reservoir using geochemical and soil microbial approaches. Environ. Monit. Assess. 2013 doi: 10.1007/s10661-012-2547-7. PubMed DOI

Azarbad H, Van Gestel CA, Niklinska M, Laskowski R, Roling WF. Resilience of soil microbial communities to metals and additional stressors: DNA-based approaches for assessing ‘stress-on-stress’ responses. Int. J. Mol. Sci. 2016;17:933. doi: 10.3390/ijms17060933. PubMed DOI PMC

Feng G, Xie T, Wang X, Bai J, Tang L, Zhao H, Wei W, Wang M. Metagenomic analysis of microbial community and function involved in Cd-contaminated soil. BMC Microbiol. 2018;18:11. doi: 10.1186/s12866-018-1152-5. PubMed DOI PMC

Trevors JT. One gram of soil: A microbial biochemical gene library. Antonie Van Leeuwenhoek. 2010;97:99–106. doi: 10.1007/s10482-009-9397-5. PubMed DOI

Siles JA, Rachid CTCC, Sampedro I, García-Romera I, Tiedie J. Microbial diversity of a Mediterranean soil and its changes after biotransformed dry olive residue amendment. PLoS ONE. 2014;9:e103035. doi: 10.1371/journal.pone.0103035. PubMed DOI PMC

Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 2011;348:439–451. doi: 10.1007/s11104-011-0948-y. DOI

Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011;159:3269–3282. doi: 10.1016/j.envpol.2011.07.023. PubMed DOI

Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ. Sci. Pollut. R. 2013;20:8472–8483. doi: 10.1007/s11356-013-1659-0. PubMed DOI

Tu C, Wei J, Guan F, Liu Y, Sun Y. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environ. Int. 2020;137:105576. doi: 10.1016/j.envint.2020.105576. PubMed DOI

Vejvodová K, Száková J, García-sánchez M, Praus L. Effect of dry olive residue-based biochar and arbuscular mycorrhizal fungi inoculation on the nutrient status and trace element content in wheat grown in the As-, Cd-, Pb-, and Zn- contaminated soils. J. Soil Sci. Plant Nutr. 2020 doi: 10.1007/s42729-020-00193-2. DOI

He L, Zhong H, Liu G, Dai Z, Brookes PC, Xu J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019;252:846–855. doi: 10.1016/j.envpol.2019.05.151. PubMed DOI

Yuan P, Wang J, Pan Y, Shen B, Wu C. Review of biochar for the management of contaminated soil: Preparation, application and prospect. Sci. Total Environ. 2019;659:473–490. doi: 10.1016/j.scitotenv.2018.12.400. PubMed DOI

Xu Y, Seshadri B, Sarkar B, Wang H, Rumpel C, Sparks D, Farrell M, Hall T, Yang X, Bolan N. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Sci. Total Environ. 2018;621:148–159. doi: 10.1016/j.scitotenv.2017.11.214. PubMed DOI

Pawlowska TE. Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl. Environ. Microbiol. 2004;70:6643–6649. doi: 10.1128/AEM.70.11.6643-6649.2004. PubMed DOI PMC

Alguacil MM, et al. The application of an organic amendment modifies the arbuscular mycorrhizal fungal communities colonizing native seedlings grown in a heavy-metal-polluted soil. Soil Biol. Biochem. 2011;43:1498–1508. doi: 10.1016/j.soilbio.2011.03.026. DOI

Zhang F, Liu M, Li Y, Che Y, Xiao Y. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci. Total Environ. 2019;655:1150–1158. doi: 10.1016/j.scitotenv.2018.11.317. PubMed DOI

Qiao Y, Crowley D, Wang K, Zhang H, Li H. Effects of biochar and arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil. Environ. Pollut. 2015;206:636–643. doi: 10.1016/j.envpol.2015.08.029. PubMed DOI

Chan WF, Li H, Wu FY, Wu SC, Wong M. Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. J. Hazard. Mater. 2013;262:1116–1122. doi: 10.1016/j.jhazmat.2012.08.020. PubMed DOI

Kohler J, Caravaca F, Azcón R, Díaz G, Roldán A. Suitability of the microbial community composition and function in a semiarid mine soil for assessing phytomanagement practices based on mycorrhizal inoculation and amendment addition. J. Environ. Manage. 2016;169:236–246. doi: 10.1016/j.jenvman.2015.12.037. PubMed DOI

Zhang Q, et al. High variations of methanogenic microorganisms drive full-scale anaerobic digestion process. Environ. Int. 2019;126:543–551. doi: 10.1016/j.envint.2019.03.005. PubMed DOI

Siles JA, Margesin R. Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site. Appl. Microbiol. Biotechnol. 2018;102:4409–4421. doi: 10.1007/s00253-018-8932-6. PubMed DOI PMC

Hovorka M, et al. Risk element sorption/desorption characteristics of dry olive residue: A technique for the potential immobilization of risk elements in contaminated soils. Environ. Sci. Pollut. Res. 2016;23:22614–22622. doi: 10.1007/s11356-016-7488-1. PubMed DOI

García-Sánchez M, et al. Implications of mycoremediated dry olive residue application and arbuscular mycorrhizal fungi inoculation on the microbial community composition and functionality in a metal-polluted soil. J. Environ. Manage. 2019;247:756–765. doi: 10.1016/j.jenvman.2019.05.101. PubMed DOI

Palansooriya KN, et al. Response of microbial communities to biochar-amended soils: A critical review. Biochar. 2019;1:3–22. doi: 10.1007/s42773-019-00009-2. DOI

Bandick AK, Dick R. Field management effects on soil enzyme activities. Soil Biol. Biochem. 1999;31:1471–1479. doi: 10.1016/S0038-0717(99)00051-6. DOI

Chen J, He F, Zhang X, Sun X, Zheng J, Zheng J. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiol. Ecol. 2014;87:164–181. doi: 10.1111/1574-6941.12212. PubMed DOI

Pokharel P, Ma Z, Chang SX. Biochar increases soil microbial biomass with changes in extra- and intracellular enzyme activities: A global meta-analysis. Biochar. 2020;2:65–79. doi: 10.1007/s42773-020-00039-1. DOI

Paz-Ferreiro J, Gascó G, Gutiérrez B, Méndez A. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol. Fertil. Soils. 2012;48:511–517. doi: 10.1007/s00374-011-0644-3. DOI

Ahmad M, et al. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. J. Hazard. Mater. 2016;301:179–186. doi: 10.1016/j.jhazmat.2015.08.029. PubMed DOI

Zhu X, Chen B, Zhu L, Xing B. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 2017;227:98–115. doi: 10.1016/j.envpol.2017.04.032. PubMed DOI

Lovelock CE, Wright SF, Nichols KA. Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: An example from a tropical rain forest soil. Soil Biol. Biochem. 2004;36:1009–1012. doi: 10.1016/j.soilbio.2004.02.010. DOI

Alguacil MM, Caravaca F, Azcón R, Roldán A. Changes in biological activity of a degraded Mediterranean soil after using microbially-treated dry olive cake as a biosolid amendment and arbuscular mycorrhizal fungi. Eur. J. Soil Biol. 2008;44:347–354. doi: 10.1016/j.ejsobi.2008.02.001. DOI

Rodríguez-Caballero G, et al. Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Sci. Total Environ. 2017 doi: 10.1016/j.scitotenv.2017.01.128. PubMed DOI

Bååth E, Anderson T-H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 2003;35:955–963. doi: 10.1016/S0038-0717(03)00154-8. DOI

Olsson PA. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol. Ecol. 1999;29:303–310. doi: 10.1111/j.1574-6941.1999.tb00621.x. DOI

Covino S, et al. Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood. J. Hazard. Mater. 2016;301:17–26. doi: 10.1016/j.jhazmat.2015.08.023. PubMed DOI

El-Naggar A, et al. Biochar-induced metal immobilization and soil biogeochemical process: An integrated mechanistic approach. Sci. Total Environ. 2020;698:134112. doi: 10.1016/j.scitotenv.2019.134112. PubMed DOI

Xu R, et al. Organic loading rate and hydraulic retention time shape distinct ecological networks of anaerobic digestion related microbiome. Bioresour. Technol. 2018;262:184–193. doi: 10.1016/j.biortech.2018.04.083. PubMed DOI

Lehmann J, et al. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011;43:1812–1836. doi: 10.1016/j.soilbio.2011.04.022. DOI

García-Sánchez M, Stejskalová T, García-Romera I, Száková J, Tlustoš P. Risk element immobilization/stabilization potential of fungal-transformed dry olive residue and arbuscular mycorrhizal fungi application in contaminated soils. J. Environ. Manage. 2017;201:110–119. doi: 10.1016/j.jenvman.2017.06.036. PubMed DOI

Toljander JF, Lindahl BD, Paul LR, Roger DF. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol. Ecol. 2007;61:295–304. doi: 10.1111/j.1574-6941.2007.00337.x. PubMed DOI

Kohler J, Caravaca F, Azcón R, Díaz G, Roldán A. The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Sci. Total Environ. 2015;514:42–48. doi: 10.1016/j.scitotenv.2015.01.085. PubMed DOI

Agnihotri R, Bharti A, Ramesh A, Prakash A, Sharma M. Glomalin related protein and C16:1ω5 PLFA associated with AM fungi as potential signatures for assessing the soil C sequestration under contrasting soil management practices. Eur. J. Soil Biol. 2021;103:103–286. doi: 10.1016/j.ejsobi.2021.103286. DOI

Ngosong C, Gabriel E, Ruess L. Use of the signature fatty acid 16:1ω5 as a tool to determine the distribution of arbuscular mycorrhizal fungi in soil. J. Lipids. 2012;2012:236807. doi: 10.1155/2012/236807. PubMed DOI PMC

Vaněk A, Borůvka L, Drábek O, Mihaljevič M, Komárek M. Mobility of lead, zinc and cadmium in alluvial soils heavily polluted by smelting industry. Plant, Soil Environ. 2005;51:316–321. doi: 10.17221/3592-PSE. DOI

Šichorová K, Tlustoš P, Száková J, Kořínek K, Balik J. Horizontal and vertical variability of heavy metals in the soil of a polluted area. Plant Soil Environ. 2004;50:525–534. doi: 10.17221/4069-PSE. DOI

García-Sánchez M, et al. Defence response of tomato seedlings to oxidative stress induced by phenolic compounds from dry olive mill residue. Chemosphere. 2012;89:708–716. doi: 10.1016/j.chemosphere.2012.06.026. PubMed DOI

Camina F, Trasar-Cepeda C, Gil-Sotres F, Leiros C. Measurement of dehydrogenase activity in acid soils rich in organic matter. Soil Biol. Biochem. 1998;30:1005–1011. doi: 10.1016/S0038-0717(98)00010-8. DOI

Eivazi F, Tabatabai M. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 1988;20:601–606. doi: 10.1016/0038-0717(88)90141-1. DOI

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911. doi: 10.1139/y59-099. PubMed DOI

Šnajdr J, Valášková V, Merhautová V, Cajthaml T, Baldrian P. Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzyme Microb. Technol. 2008;43:186–192. doi: 10.1016/j.enzmictec.2007.11.008. DOI

Sampedro I, et al. Short-term impact of dry olive mill residue addition to soil on the resident microbiota. Bioresour. Technol. 2009;100:6098–6106. doi: 10.1016/j.biortech.2009.06.026. PubMed DOI

Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980;84:489–500. doi: 10.1111/j.1469-8137.1980.tb04556.x. DOI

Wright SF, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil. 1998;198:97–107. doi: 10.1023/A:1004347701584. DOI

Wickham, H. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics (2016).

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace