Application of dry olive residue-based biochar in combination with arbuscular mycorrhizal fungi enhances the microbial status of metal contaminated soils
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35879523
PubMed Central
PMC9314387
DOI
10.1038/s41598-022-17075-5
PII: 10.1038/s41598-022-17075-5
Knihovny.cz E-zdroje
- MeSH
- dřevěné a živočišné uhlí MeSH
- houby MeSH
- kořeny rostlin chemie MeSH
- kovy farmakologie MeSH
- látky znečišťující půdu * analýza MeSH
- mykorhiza * chemie MeSH
- Olea * MeSH
- oxidoreduktasy MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biochar MeSH Prohlížeč
- dřevěné a živočišné uhlí MeSH
- kovy MeSH
- látky znečišťující půdu * MeSH
- oxidoreduktasy MeSH
- půda MeSH
Biochar made-up of dry olive residue (DOR), a biomass resulting from the olive oil extraction industry, has been proposed to be used as a reclamation agent for the recovery of metal contaminated soils. The aim of the present study was to investigate whether the soil application of DOR-based biochar alone or in combination with arbuscular mycorrhizal fungi (AMF) leads to an enhancement in the functionality and abundance of microbial communities inhabiting metal contaminated soils. To study that, a greenhouse microcosm experiment was carried out, where the effect of the factors (i) soil application of DOR-based biochar, (ii) biochar pyrolysis temperature (considering the variants 350 and 500 °C), (iii) soil application dose of biochar (2 and 5%), (iv) soil contamination level (slightly, moderately and highly polluted), (v) soil treatment time (30, 60 and 90 days) and (vi) soil inoculation with Funneliformis mosseae (AM fungus) on β-glucosidase and dehydrogenase activities, FA (fatty acid)-based abundance of soil microbial communities, soil glomalin content and AMF root colonization rates of the wheat plants growing in each microcosm were evaluated. Biochar soil amendment did not stimulate enzyme activities but increased microbial abundances. Dehydrogenase activity and microbial abundances were found to be higher in less contaminated soils and at shorter treatment times. Biochar pyrolysis temperature and application dose differently affected enzyme activities, but while the first factor did not have a significant effect on glucosidase and dehydrogenase, a higher biochar dose resulted in boosted microbial abundances. Soil inoculation with F. mosseae favored the proliferation of soil AMF community and increased soil glomalin content as well as rates of AMF root colonization. This factor also interacted with many of the others evaluated to significantly affect soil enzyme activities, microbial abundances and AMF community. Our results indicate that the application of DOR-based biochar along with AMF fungi is an appropriate approach to improve the status of microbial communities in soils with a moderate metal contamination at short-term.
Department of Plant and Microbial Biology University of California at Berkeley Berkeley CA USA
Eco and Sols CIRAD INRAE IRD Institut Agro Montpellier Université Montpellier Montpellier France
Faculty of Science Institute for Environmental Studies Charles University Prague Czech Republic
Institute of Microbiology of the Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Gall JE, Boyd RS. Transfer of heavy metals through terrestrial food webs: A review. Environ. Monit. Assess. 2015;187:201. doi: 10.1007/s10661-015-4436-3. PubMed DOI
Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol. Environ. Saf. 2007;67:75–81. doi: 10.1016/j.ecoenv.2006.03.007. PubMed DOI
Liang J, et al. Responses of enzymatic activity and microbial communities to biochar/compost amendment in sulfamethoxazole polluted wetland soil. J. Hazard. Mater. 2020;385:121533. doi: 10.1016/j.jhazmat.2019.121533. PubMed DOI
Kandeler F, Kampichler C. Influence of heavy metals on the functional diversity of soil microbial communities. Biol. Fertil. Soils. 1996;23:299–306. doi: 10.1007/BF00335958. DOI
Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklinska M. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl. Soil Ecol. 2013;64:7–14. doi: 10.1016/j.apsoil.2012.11.004. DOI
Ye C, Li S, Zhang Y, Tong X, Zhang Q. Assessing heavy metal pollution in the water level fluctuation zone of China’s Three Gorges Reservoir using geochemical and soil microbial approaches. Environ. Monit. Assess. 2013 doi: 10.1007/s10661-012-2547-7. PubMed DOI
Azarbad H, Van Gestel CA, Niklinska M, Laskowski R, Roling WF. Resilience of soil microbial communities to metals and additional stressors: DNA-based approaches for assessing ‘stress-on-stress’ responses. Int. J. Mol. Sci. 2016;17:933. doi: 10.3390/ijms17060933. PubMed DOI PMC
Feng G, Xie T, Wang X, Bai J, Tang L, Zhao H, Wei W, Wang M. Metagenomic analysis of microbial community and function involved in Cd-contaminated soil. BMC Microbiol. 2018;18:11. doi: 10.1186/s12866-018-1152-5. PubMed DOI PMC
Trevors JT. One gram of soil: A microbial biochemical gene library. Antonie Van Leeuwenhoek. 2010;97:99–106. doi: 10.1007/s10482-009-9397-5. PubMed DOI
Siles JA, Rachid CTCC, Sampedro I, García-Romera I, Tiedie J. Microbial diversity of a Mediterranean soil and its changes after biotransformed dry olive residue amendment. PLoS ONE. 2014;9:e103035. doi: 10.1371/journal.pone.0103035. PubMed DOI PMC
Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 2011;348:439–451. doi: 10.1007/s11104-011-0948-y. DOI
Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011;159:3269–3282. doi: 10.1016/j.envpol.2011.07.023. PubMed DOI
Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ. Sci. Pollut. R. 2013;20:8472–8483. doi: 10.1007/s11356-013-1659-0. PubMed DOI
Tu C, Wei J, Guan F, Liu Y, Sun Y. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environ. Int. 2020;137:105576. doi: 10.1016/j.envint.2020.105576. PubMed DOI
Vejvodová K, Száková J, García-sánchez M, Praus L. Effect of dry olive residue-based biochar and arbuscular mycorrhizal fungi inoculation on the nutrient status and trace element content in wheat grown in the As-, Cd-, Pb-, and Zn- contaminated soils. J. Soil Sci. Plant Nutr. 2020 doi: 10.1007/s42729-020-00193-2. DOI
He L, Zhong H, Liu G, Dai Z, Brookes PC, Xu J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019;252:846–855. doi: 10.1016/j.envpol.2019.05.151. PubMed DOI
Yuan P, Wang J, Pan Y, Shen B, Wu C. Review of biochar for the management of contaminated soil: Preparation, application and prospect. Sci. Total Environ. 2019;659:473–490. doi: 10.1016/j.scitotenv.2018.12.400. PubMed DOI
Xu Y, Seshadri B, Sarkar B, Wang H, Rumpel C, Sparks D, Farrell M, Hall T, Yang X, Bolan N. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Sci. Total Environ. 2018;621:148–159. doi: 10.1016/j.scitotenv.2017.11.214. PubMed DOI
Pawlowska TE. Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl. Environ. Microbiol. 2004;70:6643–6649. doi: 10.1128/AEM.70.11.6643-6649.2004. PubMed DOI PMC
Alguacil MM, et al. The application of an organic amendment modifies the arbuscular mycorrhizal fungal communities colonizing native seedlings grown in a heavy-metal-polluted soil. Soil Biol. Biochem. 2011;43:1498–1508. doi: 10.1016/j.soilbio.2011.03.026. DOI
Zhang F, Liu M, Li Y, Che Y, Xiao Y. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci. Total Environ. 2019;655:1150–1158. doi: 10.1016/j.scitotenv.2018.11.317. PubMed DOI
Qiao Y, Crowley D, Wang K, Zhang H, Li H. Effects of biochar and arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil. Environ. Pollut. 2015;206:636–643. doi: 10.1016/j.envpol.2015.08.029. PubMed DOI
Chan WF, Li H, Wu FY, Wu SC, Wong M. Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. J. Hazard. Mater. 2013;262:1116–1122. doi: 10.1016/j.jhazmat.2012.08.020. PubMed DOI
Kohler J, Caravaca F, Azcón R, Díaz G, Roldán A. Suitability of the microbial community composition and function in a semiarid mine soil for assessing phytomanagement practices based on mycorrhizal inoculation and amendment addition. J. Environ. Manage. 2016;169:236–246. doi: 10.1016/j.jenvman.2015.12.037. PubMed DOI
Zhang Q, et al. High variations of methanogenic microorganisms drive full-scale anaerobic digestion process. Environ. Int. 2019;126:543–551. doi: 10.1016/j.envint.2019.03.005. PubMed DOI
Siles JA, Margesin R. Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site. Appl. Microbiol. Biotechnol. 2018;102:4409–4421. doi: 10.1007/s00253-018-8932-6. PubMed DOI PMC
Hovorka M, et al. Risk element sorption/desorption characteristics of dry olive residue: A technique for the potential immobilization of risk elements in contaminated soils. Environ. Sci. Pollut. Res. 2016;23:22614–22622. doi: 10.1007/s11356-016-7488-1. PubMed DOI
García-Sánchez M, et al. Implications of mycoremediated dry olive residue application and arbuscular mycorrhizal fungi inoculation on the microbial community composition and functionality in a metal-polluted soil. J. Environ. Manage. 2019;247:756–765. doi: 10.1016/j.jenvman.2019.05.101. PubMed DOI
Palansooriya KN, et al. Response of microbial communities to biochar-amended soils: A critical review. Biochar. 2019;1:3–22. doi: 10.1007/s42773-019-00009-2. DOI
Bandick AK, Dick R. Field management effects on soil enzyme activities. Soil Biol. Biochem. 1999;31:1471–1479. doi: 10.1016/S0038-0717(99)00051-6. DOI
Chen J, He F, Zhang X, Sun X, Zheng J, Zheng J. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiol. Ecol. 2014;87:164–181. doi: 10.1111/1574-6941.12212. PubMed DOI
Pokharel P, Ma Z, Chang SX. Biochar increases soil microbial biomass with changes in extra- and intracellular enzyme activities: A global meta-analysis. Biochar. 2020;2:65–79. doi: 10.1007/s42773-020-00039-1. DOI
Paz-Ferreiro J, Gascó G, Gutiérrez B, Méndez A. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol. Fertil. Soils. 2012;48:511–517. doi: 10.1007/s00374-011-0644-3. DOI
Ahmad M, et al. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. J. Hazard. Mater. 2016;301:179–186. doi: 10.1016/j.jhazmat.2015.08.029. PubMed DOI
Zhu X, Chen B, Zhu L, Xing B. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 2017;227:98–115. doi: 10.1016/j.envpol.2017.04.032. PubMed DOI
Lovelock CE, Wright SF, Nichols KA. Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: An example from a tropical rain forest soil. Soil Biol. Biochem. 2004;36:1009–1012. doi: 10.1016/j.soilbio.2004.02.010. DOI
Alguacil MM, Caravaca F, Azcón R, Roldán A. Changes in biological activity of a degraded Mediterranean soil after using microbially-treated dry olive cake as a biosolid amendment and arbuscular mycorrhizal fungi. Eur. J. Soil Biol. 2008;44:347–354. doi: 10.1016/j.ejsobi.2008.02.001. DOI
Rodríguez-Caballero G, et al. Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Sci. Total Environ. 2017 doi: 10.1016/j.scitotenv.2017.01.128. PubMed DOI
Bååth E, Anderson T-H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 2003;35:955–963. doi: 10.1016/S0038-0717(03)00154-8. DOI
Olsson PA. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol. Ecol. 1999;29:303–310. doi: 10.1111/j.1574-6941.1999.tb00621.x. DOI
Covino S, et al. Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood. J. Hazard. Mater. 2016;301:17–26. doi: 10.1016/j.jhazmat.2015.08.023. PubMed DOI
El-Naggar A, et al. Biochar-induced metal immobilization and soil biogeochemical process: An integrated mechanistic approach. Sci. Total Environ. 2020;698:134112. doi: 10.1016/j.scitotenv.2019.134112. PubMed DOI
Xu R, et al. Organic loading rate and hydraulic retention time shape distinct ecological networks of anaerobic digestion related microbiome. Bioresour. Technol. 2018;262:184–193. doi: 10.1016/j.biortech.2018.04.083. PubMed DOI
Lehmann J, et al. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011;43:1812–1836. doi: 10.1016/j.soilbio.2011.04.022. DOI
García-Sánchez M, Stejskalová T, García-Romera I, Száková J, Tlustoš P. Risk element immobilization/stabilization potential of fungal-transformed dry olive residue and arbuscular mycorrhizal fungi application in contaminated soils. J. Environ. Manage. 2017;201:110–119. doi: 10.1016/j.jenvman.2017.06.036. PubMed DOI
Toljander JF, Lindahl BD, Paul LR, Roger DF. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol. Ecol. 2007;61:295–304. doi: 10.1111/j.1574-6941.2007.00337.x. PubMed DOI
Kohler J, Caravaca F, Azcón R, Díaz G, Roldán A. The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Sci. Total Environ. 2015;514:42–48. doi: 10.1016/j.scitotenv.2015.01.085. PubMed DOI
Agnihotri R, Bharti A, Ramesh A, Prakash A, Sharma M. Glomalin related protein and C16:1ω5 PLFA associated with AM fungi as potential signatures for assessing the soil C sequestration under contrasting soil management practices. Eur. J. Soil Biol. 2021;103:103–286. doi: 10.1016/j.ejsobi.2021.103286. DOI
Ngosong C, Gabriel E, Ruess L. Use of the signature fatty acid 16:1ω5 as a tool to determine the distribution of arbuscular mycorrhizal fungi in soil. J. Lipids. 2012;2012:236807. doi: 10.1155/2012/236807. PubMed DOI PMC
Vaněk A, Borůvka L, Drábek O, Mihaljevič M, Komárek M. Mobility of lead, zinc and cadmium in alluvial soils heavily polluted by smelting industry. Plant, Soil Environ. 2005;51:316–321. doi: 10.17221/3592-PSE. DOI
Šichorová K, Tlustoš P, Száková J, Kořínek K, Balik J. Horizontal and vertical variability of heavy metals in the soil of a polluted area. Plant Soil Environ. 2004;50:525–534. doi: 10.17221/4069-PSE. DOI
García-Sánchez M, et al. Defence response of tomato seedlings to oxidative stress induced by phenolic compounds from dry olive mill residue. Chemosphere. 2012;89:708–716. doi: 10.1016/j.chemosphere.2012.06.026. PubMed DOI
Camina F, Trasar-Cepeda C, Gil-Sotres F, Leiros C. Measurement of dehydrogenase activity in acid soils rich in organic matter. Soil Biol. Biochem. 1998;30:1005–1011. doi: 10.1016/S0038-0717(98)00010-8. DOI
Eivazi F, Tabatabai M. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 1988;20:601–606. doi: 10.1016/0038-0717(88)90141-1. DOI
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911. doi: 10.1139/y59-099. PubMed DOI
Šnajdr J, Valášková V, Merhautová V, Cajthaml T, Baldrian P. Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzyme Microb. Technol. 2008;43:186–192. doi: 10.1016/j.enzmictec.2007.11.008. DOI
Sampedro I, et al. Short-term impact of dry olive mill residue addition to soil on the resident microbiota. Bioresour. Technol. 2009;100:6098–6106. doi: 10.1016/j.biortech.2009.06.026. PubMed DOI
Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980;84:489–500. doi: 10.1111/j.1469-8137.1980.tb04556.x. DOI
Wright SF, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil. 1998;198:97–107. doi: 10.1023/A:1004347701584. DOI
Wickham, H. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics (2016).