Processing and Microstructure of As-Cast Ti-45Al-2W-xC Alloys
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/17_049/0008407
CZ.02.1.01/0.0/0.0/17_049/0008407
SP2022/65
SP2022/65
APVV-20-0505
APVV-20-0505
SK-CN-21-0018
SK-CN-21-0018
VEGA 2/0018/22
VEGA 2/0018/22
PubMed
35888514
PubMed Central
PMC9320707
DOI
10.3390/ma15145049
PII: ma15145049
Knihovny.cz E-resources
- Keywords
- TiAl, carbides, intermetallics, microstructure, solidification, vacuum induction melting,
- Publication type
- Journal Article MeSH
The metallurgical preparation and microstructure of as-cast Ti-45Al-2W-xC (in at.%) alloys were investigated. Five alloys with carbon content ranging from 0.38 to 1.96 at.% were prepared by vacuum induction melting (VIM) in graphite crucibles, followed by centrifugal casting into graphite moulds. A master 15W-85Al (at.%) alloy with a relatively low melting point and TiC powder were used to facilitate fast dissolution of W during VIM and to achieve the designed content of C in the as-cast alloys, respectively. The increase in the content of C affects the solidification path of the studied alloys. Differential thermal analysis (DTA) and microstructural observations show that the alloys with carbon content up to 0.75 at.% solidify with β primary phase and their dendritic as-cast microstructure consists of the α2(Ti3Al) + γ(TiAl) lamellar regions, retained B2 phase enriched by W and single γ phase formed in the interdendritic region. The increase in the content of C above 0.75 at.% leads to the formation of primary lathe-shaped Ti2AlC carbides, which act as effective heterogeneous nucleation sites of β dendrites during the solidification and grain refinement of the alloys with 1.15 and 1.96 at.% C. The increase in the content of C leads to an increase in Vickers hardness and elastic modulus in the alloys containing 1.96 at.% C.
See more in PubMed
Kim Y.W. Ordered intermetallic alloys. 3. Gamma-titanium aluminides. J. Met. 1994;46:30–39. doi: 10.1007/BF03220745. DOI
Wu X. Review of alloy and process development of TiAl alloys. Intermetallics. 2006;14:1114–1122. doi: 10.1016/j.intermet.2005.10.019. DOI
Vojtěch D., Popela T., Hamáček J., Kützendörfer J. The influence of tantalum on the high temperature characteristics of lamellar gamma + alpha 2 titanium aluminide. Mater. Sci. Eng. A. 2011;528:8557–8564. doi: 10.1016/j.msea.2011.07.070. DOI
Daloz D., Hecht U., Zollinger J., Combeau H., Hazotte A., Zaloznik M. Micro-segregation, macrosegregation and related phase transformation in TiAl alloys. Intermetallics. 2011;19:749–756. doi: 10.1016/j.intermet.2010.11.013. DOI
Ding X., Zhang L., He J., Zhang F., Feng X., Nan H., Lin J., Kim Y.W. As-cast microstructure characteristics dependent on solidification mode in TiAl-Nb alloys. J. Alloys Compd. 2019;809:151862. doi: 10.1016/j.jallcom.2019.151862. DOI
Appel F., Paul J.D.H., Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology. Wiley-VCH Verlag & Co. KGaA; Weinheim, Germany: 2011. DOI
Kim Y.W., Kim S.L. Advances in gamma alloy materials–processes–application technology: Successes, dilemmas, and future. JOM. 2018;70:553–560. doi: 10.1007/s11837-018-2747-x. DOI
Couret A., Monchoux J.P., Cailard D. On the high creep strength of the W containing IRIS-TiAl alloy at 850 °C. Acta Mater. 2019;181:331–341. doi: 10.1016/j.actamat.2019.09.056. DOI
Lapin J., Pelachova T. Microstructural stability of a cast Ti-45.2Al-2W-0.6Si-0.7B alloy at temperatures 973–1073 K. Intermetallics. 2006;14:1175–1180. doi: 10.1016/j.intermet.2005.12.013. DOI
Lapin J., Nazmy M. Microstructure and creep properties of a cast intermetallic Ti-46Al-2W-0.5Si alloy for gas turbine applications. Mater. Sci. Eng. A. 2004;380:298–307. doi: 10.1016/j.msea.2004.05.011. DOI
Zhou L.Z., Lupinc V., Guo J.T. Microstructural stability of the intermetallic Ti-45Al-2W-0.5Si-0.5B in the 800–980 °C temperature range. Mater. Sci. Eng. A. 2003;354:97–105. doi: 10.1016/S0921-5093(02)00918-8. DOI
Seo D.Y., Beddoes J., Zhao L. Primary creep behavior of Ti-48Al-2W as a function of stress and lamellar morphology. Metall. Mater. Trans. A. 2003;34:2177–2190. doi: 10.1007/s11661-003-0281-z. DOI
Beddoes J., Seo D.Y., Saari H. Long term creep of TiAl + W + Si with polycrystalline and columnar grain structures. Scr. Mater. 2005;52:745–750. doi: 10.1016/j.scriptamat.2004.12.016. DOI
Szkliniarz W., Szkliniarz A. Microstructure and properties of TiAl-based alloys melted in graphite crucible. Metals. 2021;11:669. doi: 10.3390/met11040669. DOI
Appel F., Paul J.D.H., Oehring M., Fröbel U., Lorenz U. Creep behavior of TiAl alloys with enhanced high-temperature capability. Metall. Mater. Trans. A. 2003;34:2149–2164. doi: 10.1007/s11661-003-0279-6. DOI
Schwaighofer E., Rashkova B., Clemens H., Stark A., Mayer S. Effect of carbon addition on solidification behavior, phase evolution and creep properties of an intermetallic β-stabilized γ-TiAl based alloy. Intermetallics. 2014;46:173–184. doi: 10.1016/j.intermet.2013.11.011. DOI
Lapin J., Kamyshnykova K. Processing, microstructure and mechanical properties of in-situ Ti3Al + TiAl matrix composite reinforced with Ti2AlC particles prepared by centrifugal casting. Intermetallics. 2018;98:34–44. doi: 10.1016/j.intermet.2018.04.012. DOI
Scheu C., Sterger E., Schober M., Cha L., Clemens H., Bartels A., Schimansky F.P., Cerezo A. High Carbon Solubility in a gamma-TiAl based Ti-45Al-5Nb-0.5C Alloy and its Effect on Hardening. Acta Mater. 2009;57:1504–1511. doi: 10.1016/j.actamat.2008.11.037. DOI
Perdrix F., Trichet M.F., Bonnetien J.L., Cornet M. Relationships between interstitial content, microstructure and mechanical properties in fully lamellar Ti–48Al alloys, with special reference to carbon. Intermetallics. 2001;9:807–815. doi: 10.1016/S0966-9795(01)00066-8. DOI
Song L., Hu X., Wang L., Stark A., Lazurenko D., Lorenz U., Lin J., Pyczak F., Zhang T. Microstructure evolution and enhanced creep property of a high Nb containing TiAl alloy with carbon addition. J. Alloys Compd. 2019;807:151649. doi: 10.1016/j.jallcom.2019.151649. DOI
Gabrisch H., Stark A., Schimansky F.P., Wang L., Schell N., Lorenz U., Pyczak F. Investigation of carbides in Ti-45Al-5Nb-xC alloys (0 ≤ x ≤ 1) by transmission electron microscopy and high energy-XRD. Intermetallics. 2013;33:44–53. doi: 10.1016/j.intermet.2012.09.023. DOI
Wang L., Oehring M., Lorenz U., Stark A., Pyczak F. New insights into perovskite-Ti3AlC precipitate splitting in a Ti-45Al-5Nb-0.75C alloy by transmission electron microscopy. Intermetallics. 2018;100:70–76. doi: 10.1016/j.intermet.2018.06.006. DOI
Lapin J., Klimová A., Gabalcová Z., Pelachová T., Bajana O., Štamborská M. Microstructure and mechanical properties of cast in-situ TiAl matrix composites reinforced with (Ti,Nb)2AlC particles. Mater. Des. 2017;133:404–415. doi: 10.1016/j.matdes.2017.08.012. DOI
Klimová A., Lapin J. Effect of Al content on microstructure of Ti-Al-Nb-C-Mo composites reinforced with carbide particles. Kov. Mater. 2019;57:377–387. doi: 10.4149/km_2019_6_377. DOI
Lapin J., Kamyshnykova K. Effect of Ta and W additions on microstructure and mechanical properties of tilt-cast Ti-45Al-5Nb-2C alloy. Metals. 2021;11:2052. doi: 10.3390/met11122052. DOI
Lapin J., Klimová A. Vacuum induction melting and casting of TiAl-based matrix in-situ composites reinforced by carbide particles using graphite crucibles and moulds. Vacuum. 2019;169:108930. doi: 10.1016/j.vacuum.2019.108930. DOI
Chen R., Fang H., Chen X., Su Y., Ding H., Guo J., Fu H. Formation of TiC/Ti2AlC and α2 + γ in in-situ TiAl composites with different solidification paths. Intermetallics. 2017;81:9–15. doi: 10.1016/j.intermet.2017.02.025. DOI
Lapin J., Kamyshnykova K., Klimova A. Comparative study of microstructure and mechanical properties of two TiAl-based alloys reinforced with carbide particles. Molecules. 2020;25:3423. doi: 10.3390/molecules25153423. PubMed DOI PMC
Cegan T., Cagala M., Kursa M., Kawulok P., Rusz S., Jurica J., Vontorova J. Effect of Ti2AlC particles on the microstructure and elevated-temperature-deformation properties of γ-TiAl alloys. Mater. Technol. 2014;48:831–835.
Aguilar J., Schievenbusch A., Kättlitz O. Investment casting technology for production of TiAl low pressure turbine blades—Process engineering and parameter analysis. Intermetallics. 2011;19:757–761. doi: 10.1016/j.intermet.2010.11.014. DOI
Brotzu A., Felli F., Mondal A., Pilone D. Production issues in the manufacturing of TiAl turbine blades by investment casting. Procedia Struct. Integr. 2020;25:79–87. doi: 10.1016/j.prostr.2020.04.012. DOI
Ye Q.C., Xiao K.Q., Cao R.X., Wu H., Zhao G.W., Li B. Microstructure evolution and microhardness of TiAl based alloy blade by vacuum suction casting. Vacuum. 2019;163:186–193. doi: 10.1016/j.vacuum.2019.02.028. DOI
Jovanović M.T., Dimčić B., Bobić I., Zec S., Maksimović V. Microstructure and mechanical properties of precision cast TiAl turbocharger wheel. J. Mater. Process. Technol. 2005;167:14–21. doi: 10.1016/j.jmatprotec.2005.03.019. DOI
Shouren W., Peiquan G., Liying Y. Centrifugal precision cast TiAl turbocharger wheel using ceramic mold. J. Mater. Process. Technol. 2008;204:492–497. doi: 10.1016/j.jmatprotec.2008.01.062. DOI
Wang M.S., Liu E.W., Du Y.L., Liu T.T., Liao W.H. Cracking mechanism and a novel strategy to eliminate cracks in TiAl alloy additively manufactured by selective laser melting. Scr. Mater. 2021;204:114151. doi: 10.1016/j.scriptamat.2021.114151. DOI
Zhang J., Wu Y., Cheng X., Zhang S., Wang H. Study of microstructure evolution and preference growth direction in a fully laminated directional micro-columnar TiAl fabricated using laser additive manufacturing technique. Mater. Lett. 2019;243:62–65. doi: 10.1016/j.matlet.2019.01.137. DOI
Huang D., Tan Q., Zhou Y., Yin Y., Wang F., Wu T., Yang X., Fan Z., Liu Y., Zhang J., et al. The significant impact of grain refiner on γ-TiAl intermetallic fabricated by laser-based additive manufacturing. Addit. Manuf. 2021;46:102172. doi: 10.1016/j.addma.2021.102172. DOI
Güther V., Allen M., Klose J., Clemens H. Metallurgical processing of titanium aluminides on industrial scale. Intermetallics. 2018;103:12–22. doi: 10.1016/j.intermet.2018.09.006. DOI
Chen G., Lan B., Xiong F., Gao P., Zhang H., Lu X., Li C. Pilot-scale experimental evaluation of induction melting of Ti-46Al-8Nb alloy in the fused BaZrO3 crucible. Vacuum. 2019;159:293–298. doi: 10.1016/j.vacuum.2018.10.050. DOI
Chen G., Yu F., Hou X., Yang Y., Duan B., Feng Q., Zou X., Wang E., Hou X., Lu X., et al. Performance of BaZrO3/Y2O3 dual-phase refractory applied to TiAl alloy melting. Ceram. Int. 2022;48:20158–20167. doi: 10.1016/j.ceramint.2022.03.294. DOI
Kuang J.P., Harding R.A., Campbell J. Investigation into refractories as crucible and mould materials for melting and casting γ-TiAl alloys. Mater. Sci. Technol. 2000;16:1007–1016. doi: 10.1179/026708300101508964. DOI
Gomez F., Barbosa J., Ribiero C.S. Induction melting of γ-TiAl in CaO crucibles. Intermetallics. 2008;16:1292–1297. doi: 10.1016/j.intermet.2008.08.008. DOI
Lapin J., Ondrúš L., Nazmy M. Directional solidification of intermetallic Ti-46Al-2W-0.5Si alloy in alumina moulds. Intermetallics. 2002;10:1019–1031. doi: 10.1016/S0966-9795(02)00119-X. DOI
Szkliniarz W., Szkliniarz A. The chemical composition and microstructure of Ti-47Al-2W-0.5Si alloy melted in ceramic crucibles. Solid State Phenom. 2012;191:211–220. doi: 10.4028/www.scientific.net/SSP.191.211. DOI
Szkliniarz W., Szkliniarz A. The characteristics of TiAl-based alloys melted in graphite crucibles. Mater. Sci. Technol. 2019;35:297–305. doi: 10.1080/02670836.2017.1413036. DOI
Lapin J., Gabalcová Z., Pelachová T. Effect of Y2O3 crucible on contamination of directionally solidified intermetallic Ti-46Al-8Nb alloy. Intermetallics. 2011;19:396–403. doi: 10.1016/j.intermet.2010.11.007. DOI
Kamyshnykova K., Lapin J. Vacuum induction melting and solidification of TiAl-based alloy in graphite crucibles. Vacuum. 2018;154:218–226. doi: 10.1016/j.vacuum.2018.05.017. DOI
Jurica J., Cegan T., Skotnicova K., Petlak D., Smetana B., Matejka V. Preparation and properties of master alloys Nb-Al and Ta-Al for melting and casting of γ-TiAl intermetallics. Mater. Tehnol. 2015;49:27–30.
Harding R.A. Recent developments in the induction skull melting and investment casting of titanium aluminides. Kov. Mater. 2004;42:225–241.
Bojarevicz V., Harding R.A., Pericleous K., Wickins M. The Development and Experimental Validation of a Numerical Model of an Induction Skull Melting Furnace. Metall. Mater. Trans. B. 2004;35:785–803. doi: 10.1007/s11663-004-0019-3. DOI
Kamyshnykova K., Lapin J., Pelachová T., Cegan T., Jurica J., Volodarskaja A. Microstructure and mechanical properties of Ti–45Al–2W–xC alloys. Intermetallics. 2022;148:107168. doi: 10.1016/j.intermet.2022.107618. DOI
Cegan T., Szurman I., Kursa M., Holesinsky J., Vontorova J. Preparation of TiAl-based alloys by induction melting in graphite crucibles. Kov. Mater. 2015;53:69–78. doi: 10.4149/km_2015_2_69. DOI
Cegan T., Petlak D., Skotnicova K., Jurica J., Smetana B., Zla S. Metallurgical Preparation of Nb–Al and W–Al Intermetallic Compounds and Characterization of Their Microstructure and Phase Transformations by DTA Technique. Molecules. 2020;25:2001. doi: 10.3390/molecules25082001. PubMed DOI PMC
Lapin J., Kamyshnykova K., Pelachová T., Nagy S. Effect of carbon addition and cooling rate on lamellar structure of peritectic TiAl-based alloy. Intermetallics. 2021;128:107007. doi: 10.1016/j.intermet.2020.107007. DOI
Zollinger J., Gabalcová Z., Daloz D., Lapin J., Combeau H. Microsegregation induced microstructures in intermetallic Ti-46Al-8Nb alloy. Kov. Mater. 2008;46:291–296.
Gil I., Muñoz-Morris M.A., Morris D.G. The effect of heat treatments on the microstructural stability of the intermetallic Ti–46.5Al– 2W–0.5Si. Intermetallics. 2001;9:373–385. doi: 10.1016/S0966-9795(01)00014-0. DOI
Klimová A., Lapin J. The effect of heat treatment on microstructure and hardness of in-situ Ti-38Al-7.5Nb-5C-0.9Mo composite. Kov. Mater. 2020;58:433–443. doi: 10.4149/km_2020_6_433. DOI
Lapin J., Gabalcova Z. Solidification behaviour of TiAl-based alloys studied by directional solidification technique. Intermetallics. 2011;19:797–804. doi: 10.1016/j.intermet.2010.11.021. DOI
Liu B., Liu Y., Huang L., Huang J., Zhang Y., Huang B. Effect of trace tungsten on the microstructure of TiAl alloys containing Nb and B. Rare Met. 2007;26:323–329. doi: 10.1016/S1001-0521(07)60223-X. DOI
Zollinger J., Lapin J., Daloz D., Combeau H. Influence of oxygen on solidification behaviour of cast TiAl-based alloys. Intermetallics. 2007;15:1343–1350. doi: 10.1016/j.intermet.2007.04.002. DOI
Klimová A., Lapin J. Microsegregation behaviour of the alloying elements in directionally solidified intermetallic Ti-44Al-5Nb-0.2B-0.2C alloy; Proceedings of the METAL 2012—21st Anniversary International Conference on Metallurgy and Materials; Brno, Czech Republic. 23–25 May 2012.
Witusiewicz V.T., Hallstedt B., Bondar A.A., Hecht U., Sleptsov S.V., Velikanova T.Y. Thermodynamic description of the Al-C-Ti system. J. Alloys Compd. 2015;623:480–496. doi: 10.1016/j.jallcom.2014.10.119. DOI
Muñoz-Morris M.A., Gil A.I., Morris D.G. Microstructural stability of γ-based TiAl intermetallics containing β phase. Intermetallics. 2005;13:929–936. doi: 10.1016/j.intermet.2004.12.005. DOI
Wang Q., Ding H., Zhang H., Chen R., Guo J., Fu H. Variations of microstructure and tensile property of γ-TiAl alloys with 0–0.5 at% C additives. Mater. Sci. Eng. A. 2017;700:198–208. doi: 10.1016/j.msea.2017.06.019. DOI
Menand A., Huguet A., Nérac-Partaix A. Interstitial solubility in γ and α2 phases of TiAl-based alloys. Acta Mater. 1996;44:4729–4737. doi: 10.1016/S1359-6454(96)00111-5. DOI
Klimová A., Lapin J. Effects of C and N additions on primary MAX phase particles in intermetallic Ti-Al-Nb-Mo matrix in-situ composites prepared by vacuum induction melting. Kov. Mater. 2019;57:151–157. doi: 10.4149/km_2019_3_151. DOI
Wang J.H., Lu Y., Zhang X.L., Hong Shao X. The elastic behaviors and theoretical tensile strength of γ-TiAl alloy from the first principles calculations. Intermetallics. 2018;101:1–7. doi: 10.1016/j.intermet.2018.07.001. DOI
Tanaka K., Okamoto K., Inul H., Mlnonishl Y., Yamaguch M., Koiwa M. Elastic constants and their temperature dependence for the intermetallic compound Ti3Al. Philos. Mag. A. 1996;73:1475–1488. doi: 10.1080/01418619608245145. DOI