Circulating Metabolites in Relation to the Kidney Allograft Function in Posttransplant Patients

. 2022 Jul 18 ; 12 (7) : . [epub] 20220718

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35888785

Grantová podpora
VEGA 1/0023/19 Funding: This work was supported by the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and Slovak Academy of Sciences

End-stage kidney disease is preferably treated by kidney transplantation. The suboptimal function of the allograft often results in misbalances in kidney-controlled processes and requires long-term monitoring of allograft function and viability. As the kidneys are organs with a very high metabolomic rate, a metabolomics approach is suitable to describe systematic changes in post-transplant patients and has great potential for monitoring allograft function, which has not been described yet. In this study, we used blood plasma samples from 55 patients after primary kidney transplantation identically treated with immunosuppressants with follow-up 50 months in the mean after surgery and evaluated relative levels of basal plasma metabolites detectable by NMR spectroscopy. We were looking for the correlations between circulating metabolites levels and allograft performance and allograft rejection features. Our results imply a quantitative relationship between restricted renal function, insufficient hydroxylation of phenylalanine to tyrosine, lowered renal glutamine utilization, shifted nitrogen balance, and other alterations that are not related exclusively to the metabolism of the kidney. No link between allograft function and energy metabolism can be concluded, as no changes were found for glucose, glycolytic intermediates, and 3-hydroxybutyrate as a ketone body representative. The observed changes are to be seen as a superposition of changes in the comprehensive inter-organ metabolic exchange, when the restricted function of one organ may induce compensatory effects or cause secondary alterations. Particular differences in plasma metabolite levels in patients with acute cellular and antibody-mediated allograft rejection were considered rather to be related to the loss of kidney function than to the molecular mechanism of graft rejection since they largely follow the alterations observed by restricted allograft function. In the end, we showed using a simple mathematical model, multilinear regression, that the basal plasmatic metabolites correlated with allograft function expressed by the level of glomerular filtration rate (with creatinine: p-value = 4.0 × 10-26 and r = 0.94, without creatinine: p-value = 3.2 × 10-22 and r = 0.91) make the noninvasive estimation of the allograft function feasible.

Zobrazit více v PubMed

van de Poll M.C., Soeters P.B., Deutz N.E., Fearon K.C., Dejong C.H. Renal metabolism of amino acids: Its role in interorgan amino acid exchange. Am. J. Clin. Nutr. 2004;79:185–197. doi: 10.1093/ajcn/79.2.185. PubMed DOI

Metabolic Adaptation of the Kidney to Hyperammonemia during Chronic Liver Insufficiency in the rat—Dejong—1993—Hepatology—Wiley Online Library. [(accessed on 17 March 2022)]. Available online: https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep.1840180422. PubMed DOI

Ammonia and Glutamine Metabolism During Liver Insufficiency: The Role of Kidney and Brain in Interorgan Nitrogen Exchange. [(accessed on 17 March 2022)]. Available online: https://www.tandfonline.com/doi/abs/10.3109/00365529609094733. PubMed DOI

Wijermars L.G.M., Schaapherder A.F., de Vries D.K., Verschuren L., Wüst R.C.I., Kostidis S., Mayboroda O.A., Prins F., Ringers J., Bierau J., et al. Defective postreperfusion metabolic recovery directly associates with incident delayed graft function. Kidney Int. 2016;90:181–191. doi: 10.1016/j.kint.2016.02.034. PubMed DOI

Stenlund H., Madsen R., Vivi A., Calderisi M., Lundstedt T., Tassini M., Carmellini M., Trygg J. Monitoring kidney-transplant patients using metabolomics and dynamic modeling. Chemom. Intell. Lab. Syst. 2009;98:45–50. doi: 10.1016/j.chemolab.2009.04.013. DOI

Suhre K., Schwartz J.E., Sharma V.K., Chen Q., Lee J.R., Muthukumar T., Dadhania D.M., Ding R., Ikle D.N., Bridges N.D., et al. Urine Metabolite Profiles Predictive of Human Kidney Allograft Status. J. Am. Soc. Nephrol. 2016;27:626–636. doi: 10.1681/ASN.2015010107. PubMed DOI PMC

Calderisi M., Vivi A., Mlynarz P., Tassin M., Banasik M., Dawiskiba T., Carmellini M. Using Metabolomics to Monitor Kidney Transplantation Patients by Means of Clustering to Spot Anomalous Patient Behavior. Transplant. Proc. 2013;45:1511–1515. doi: 10.1016/j.transproceed.2013.02.049. PubMed DOI

Nagana Gowda G.A., Gowda Y.N., Raftery D. Expanding the limits of human blood metabolite quantitation using NMR spectroscopy. Anal. Chem. 2015;87:706–715. doi: 10.1021/ac503651e. PubMed DOI PMC

Wishart D.S., Guo A., Oler E., Wang F., Anjum A., Peters H., Dizon R., Sayeeda Z., Tian S., Lee B.L., et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022;50:D622–D631. doi: 10.1093/nar/gkab1062. PubMed DOI PMC

Kruskal Wallis Test Calculator—With Post-Hoc Dunn’s Test Multiple Comparisons. [(accessed on 16 March 2022)]. Available online: https://www.statskingdom.com/kruskal-wallis-calculator.html.

Pang Z., Chong J., Zhou G., de Lima Morais D.A., Chang L., Barrette M., Gauthier C., Jacques P.-É., Li S., Xia J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49:W388–W396. doi: 10.1093/nar/gkab382. PubMed DOI PMC

Møller N., Meek S., Bigelow M., Andrews J., Nair K.S. The kidney is an important site for in vivo phenylalanine-to-tyrosine conversion in adult humans: A metabolic role of the kidney. Proc. Natl. Acad. Sci. USA. 2000;97:1242–1246. doi: 10.1073/pnas.97.3.1242. PubMed DOI PMC

Kopple J.D. Phenylalanine and Tyrosine Metabolism in Chronic Kidney Failure. J. Nutr. 2007;137:1586S–1590S. doi: 10.1093/jn/137.6.1586S. PubMed DOI

Boirie Y., Albright R., Bigelow M., Nair K.S. Impairment of phenylalanine conversion to tyrosine inend-stage renal disease causing tyrosine deficiency. Kidney Int. 2004;66:591–596. doi: 10.1111/j.1523-1755.2004.00778.x. PubMed DOI

Newsholme P., Curi R., Pithon Curi T.C., Murphy C.J., Garcia C., Pires de Melo M. Glutamine metabolism by lymphocytes, macrophages, and neutrophils: Its importance in health and disease. J. Nutr. Biochem. 1999;10:316–324. doi: 10.1016/S0955-2863(99)00022-4. PubMed DOI

Calder P.C., Yaqoob P. Glutamine and the immune system. Amino Acids. 1999;17:227–241. doi: 10.1007/BF01366922. PubMed DOI

Cruzat V., Rogero M.M., Keane K.N., Curi R., Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients. 2018;10:1564. doi: 10.3390/nu10111564. PubMed DOI PMC

Taylor L., Curthoys N.P. Glutamine metabolism: Role in acid-base balance. Biochem. Mol. Biol. Educ. 2004;32:291–304. doi: 10.1002/bmb.2004.494032050388. PubMed DOI

Weiner I.D., Verlander J.W. Renal Ammonia Metabolism and Transport. Compr. Physiol. 2013;3:201. doi: 10.1002/cphy.c120010. PubMed DOI PMC

Chen W., Abramowitz M.K. Metabolic acidosis and the progression of chronic kidney disease. BMC Nephrol. 2014;15:55. doi: 10.1186/1471-2369-15-55. PubMed DOI PMC

Ritter A., Mohebbi N. Causes and Consequences of Metabolic Acidosis in Patients after Kidney Transplantation. Kidney Blood Press. Res. 2020;45:792–801. doi: 10.1159/000510158. PubMed DOI

Adamczak M., Masajtis-Zagajewska A., Mazanowska O., Madziarska K., Stompór T., Więcek A. Diagnosis and Treatment of Metabolic Acidosis in Patients with Chronic Kidney Disease—Position Statement of the Working Group of the Polish Society of Nephrology. Kidney Blood Press. Res. 2018;43:959–969. doi: 10.1159/000490475. PubMed DOI

May R.C., Kelly R.A., Mitch W.E. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism. J. Clin. Investig. 1986;77:614–621. doi: 10.1172/JCI112344. PubMed DOI PMC

Tizianello A., De Ferrari G., Garibotto G., Robaudo C. Amino acid metabolism and the liver in renal failure. Am. J. Clin. Nutr. 1980;33:1354–1362. doi: 10.1093/ajcn/33.7.1354. PubMed DOI

Koppe L., Cassani de Oliveira M., Fouque D. Ketoacid Analogues Supplementation in Chronic Kidney Disease and Future Perspectives. Nutrients. 2019;11:2071. doi: 10.3390/nu11092071. PubMed DOI PMC

Chen J.-B., Cheng B.-C., Kao T.-W. A comparison of progression of chronic renal failure: Low dose vs. standard dose ketoacIDS. Kidney Res. Clin. Pract. 2012;31:A24. doi: 10.1016/j.krcp.2012.04.357. DOI

Vera-Aviles M., Vantana E., Kardinasari E., Koh N.L., Latunde-Dada G.O. Protective Role of Histidine Supplementation Against Oxidative Stress Damage in the Management of Anemia of Chronic Kidney Disease. Pharmaceuticals. 2018;11:111. doi: 10.3390/ph11040111. PubMed DOI PMC

Holeček M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients. 2020;12:848. doi: 10.3390/nu12030848. PubMed DOI PMC

Liu W., Liu T., Yin M. Beneficial effects of histidine and carnosine on ethanol-induced chronic liver injury. Food Chem. Toxicol. 2008;46:1503–1509. doi: 10.1016/j.fct.2007.12.013. PubMed DOI

Cueto-Manzano A.M., Morales-Buenrostro L.E., González-Espinoza L., González-Tableros N., Martín-del-Campo F., Correa-Rotter R., Valera I., Alberú J. Markers of Inflammation before and after Renal Transplantation. Transplantation. 2005;80:47–51. doi: 10.1097/01.TP.0000164348.16689.03. PubMed DOI

Branco A.C.C.C., Yoshikawa F.S.Y., Pietrobon A.J., Sato M.N. Role of Histamine in Modulating the Immune Response and Inflammation. Mediators Inflamm. 2018;2018:e9524075. doi: 10.1155/2018/9524075. PubMed DOI PMC

Hamm L.L. Renal handling of citrate. Kidney Int. 1990;38:728–735. doi: 10.1038/ki.1990.265. PubMed DOI

Hering-Smith K.S., Hamm L.L. Acidosis and citrate: Provocative interactions. Ann. Transl. Med. 2018;6:29. doi: 10.21037/atm.2018.07.37. PubMed DOI PMC

Lynch C.J., Adams S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014;10:723. doi: 10.1038/nrendo.2014.171. PubMed DOI PMC

Calder P.C. Branched-Chain Amino Acids and Immunity. J. Nutr. 2006;136:288S–293S. doi: 10.1093/jn/136.1.288S. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...