In Vivo Contrast Imaging of Rat Heart with Carbon Dioxide Foam

. 2022 Jul 08 ; 22 (14) : . [epub] 20220708

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35890804

Grantová podpora
GIP-20-L-01-723 General University Hospital in Prague
MH-CZ-DRO-VFN-00064165 Ministry of Health of the Czech Republic
National Infrastructure for Biological and Medical Imaging, Czech BioImaging No.: 2018129 MEYS
No.: CZ.02.01./0.0./0.0./16_013/0001775 European Regional Development Fund
68081731 Czech Academy of Sciences

Widely used classical angiography with the use of iodine contrast agents is highly problematic, particularly in patients with diabetes mellitus, cardiac and pulmonary diseases, or degree III or IV renal insufficiency. Some patients may be susceptible to allergic reaction to the iodine contrast substance. The intravenous injection of a bolus of CO2 (negative contrast) is an alternative method, which is, however, currently only used for imaging blood vessels of the lower limbs. The aim of our project was to design and test on an animal model a methodology for injecting the CO2 foam which would minimize the possibility of embolization of the brain tissue and heart infarction, leading to their damage. This is important research for the further promotion of the use of CO2, which is increasingly important for endovascular diagnosis and treatment, because carbon-dioxide-related complications are extremely rare. CO2 foam was prepared by the rapid mixing in a 2:1 ratio of CO2 and fetal bovine serum (FBS)-enriched Dulbecco's Modified Eagle Medium (DMEM). Freshly prepared CO2 foam was administered into the catheterized rat tail vein or cannulated rat abdominal aorta and inferior vena cava (IVC). CO2 foam was compared with commercially available microbubbles (lipid shell/gas core). The rat heart in its parasternal long axis was imaged in B-Mode and Non-linear Contrast Mode before/during and after the contrast administration. Samples of the brain, heart and lungs were collected and subjected to histological examination. The non-linear contrast imaging method enables the imaging of micron-sized gas microbubbles inside a rat heart. The significantly shorter lifetime of the prepared CO2 foam is a benefit for avoiding the local ischemia of tissues.

Zobrazit více v PubMed

Moll F.L., Powell J.T., Fraedrich G., Verzini F., Haulon S., Waltham M., van Herwaarden J.A., Holt P.J., van Keulen J.W., Rantner B., et al. Management of abdominal aortic aneurysms. Clinical Practice Guidelines of the European Society for Vascular Surgery. Eur. J. Endovasc Surg. 2011;41((Suppl. S1)):S1–S58. doi: 10.1016/j.ejvs.2010.09.011. PubMed DOI

Bottinor W., Polkampally P., Jovin I. Adverse reactions to iodinated contrast media. Int. J. Angiol. 2013;22:149–154. PubMed PMC

Caridi J.G., Hawkins I.F., Jr., Klioze S.D., Leveen R.F. Carbon dioxide digital subtraction angiography: The practical approach. Tech. Vasc. Interv. Radiol. 2001;4:57–65. doi: 10.1053/tvir.2001.22006. PubMed DOI

Kerns S.R., Hawkins I.F., Jr. Carbon dioxide digital subtraction angiography: Expanding applications and technical evolution. AJR Am. J. Roentgenol. 1995;164:735–741. doi: 10.2214/ajr.164.3.7863904. PubMed DOI

Beese R.C., Bees N.R., Belli A.M. Renal angiography using carbon dioxide. Br. J. Radiol. 2000;73:3–6. doi: 10.1259/bjr.73.865.10721312. PubMed DOI

Cuen-Ojeda C., Anaya-Ayala J.E., Lizola R., Navarro-Iniguez J.A., Luna L., Guerrero-Hernandez M., Hinojosa C.A. Percutaneous Endovascular Aortic Aneurysm Repair with INCRAFT Endograft Guided by CO2 Digital Subtraction Angiography in Patients with Renal Insufficiency. Vasc. Spec. Int. 2020;36:28–32. doi: 10.5758/vsi.2020.36.1.28. PubMed DOI PMC

Barrett B.J. Contrast Nephrotoxicity. J. Am. Soc. Nephrol. 1994;5:125–137. doi: 10.1681/ASN.V52125. PubMed DOI

Cyran C.C., Paprottka P.M., Eisenblätter M., Clevert D.A., Rist C., Nikolaou K., Lauber K., Wenz F., Hausmann D., Reiser M.F., et al. Visualization, imaging, and new preclinical diagnostics in radiation oncology. Radiat. Oncol. 2014;9:3. doi: 10.1186/1748-717X-9-3. PubMed DOI PMC

Hackl C., Schacherer D., Anders M., Wiedemann L.M., Mohr A., Schlitt H.J., Stroszczynski C., Tranquart F., Jung E.M. Improved Detection of preclinical Colorectal Liver Metastases by High Resolution Ultrasound including Molecular Ultrasound Imaging using the targeted Contrast Agent BR55. Ultraschall Med. 2016;37:290–296. doi: 10.1055/s-0041-111838. PubMed DOI

Opacic T., Dencks S., Theek B., Piepenbrock M., Ackermann D., Rix A., Lammers T., Stickeler E., Delorme S., Schmitz G., et al. Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization. Nat. Commun. 2018;9:1527. doi: 10.1038/s41467-018-03973-8. PubMed DOI PMC

Pulsipher K.W., Hammer D.A., Lee D., Seghal C.M. Engineering theranostic microbubbles using microfluidics for ultrasound imaging and therapy: A review. Ultrasound Med. Biol. 2018;44:2441–2460. doi: 10.1016/j.ultrasmedbio.2018.07.026. PubMed DOI PMC

Tang R., Yan F., Yang G.-Y., Chen K.-M. Phase contrast imaging of preclinical portal vein embolization with CO2 microbubbles. J. Synchrotron Radiat. 2017;24:1260–1264. doi: 10.1107/S1600577517014072. PubMed DOI

Ali F., Mangi M.A., Rehman H., Kaluski E. Use of carbon dioxide as an intravascular contrast agent: A review of current literature. World J. Cardiol. 2017;9:715–722. doi: 10.4330/wjc.v9.i9.715. PubMed DOI PMC

Bürckenmeyer F., Schmidt A., Diamantis I., Lehmann T., Malouhi A., Franiel T., Zanow J., Teichgräber U.K.M., Aschenbach R. Image quality and safety of automated carbon dioxide digital subtraction angiography in femoropopliteal lesions: Results from a randomized single-center study. Eur. J. Radiol. 2021;135:109476. doi: 10.1016/j.ejrad.2020.109476. PubMed DOI

Egidy Assenza G., Spinardi L., Mariucci E., Balducci A., Ragni L., Ciuca C., Formigari R., Angeli E., Vornetti G., Gargiulo G.D., et al. Transcatheter Closure of PFO and ASD: Multimodality Imaging for Patient Selection and Perioperative Guidance. J. Cardiovasc. Dev. Dis. 2021;8:78. doi: 10.3390/jcdd8070078. PubMed DOI PMC

Sramek M., Honek J., Tomek A., Ruzickova T., Honek T., Sefc L. Risk stratification of neurological decompression sickness in divers. Bratisl. Med. J. 2022;123:77–82. doi: 10.4149/BLL_2022_022. PubMed DOI

Li L., Zeng X.Q., Li Y.H. Digital subtraction angiography-guided foam sclerotherapy of peripheral venous malformations. AJR Am. J. Roentgenol. 2010;194:W439–W444. doi: 10.2214/AJR.09.3416. PubMed DOI

Chang T.I., Chan C.Y., Su S.K., Wang S.S., Wu I.H. A novel bubble-mixture method to improve dynamic images in carbon dioxide angiography. J. Endovasc. Ther. 2015;22:564–567. doi: 10.1177/1526602815590350. PubMed DOI

Bacou M., Rajasekaran V., Thomson A., Sjöstrand S., Kaczmarek K., Ochocka-Fox A.M., Gerrard A.D., Moug S., Jansson T., Mulvana H., et al. Development of Preclinical Ultrasound Imaging Techniques to Identify and Image Sentinel Lymph Nodes in a Cancerous Animal Model. Cancers. 2022;14:561. doi: 10.3390/cancers14030561. PubMed DOI PMC

Świtalska M., Filip-Psurska B., Milczarek M., Psurski M., Moszyńska A., Dąbrowska A.M., Gawrońska M., Krzymiński K., Bagiński M., Bartoszewski R., et al. Combined anticancer therapy with imidazoacridinone C-1305 and paclitaxel in human lung and colon cancer xenografts—Modulation of tumour angiogenesis. J. Cell. Mol. Med. 2022 doi: 10.1111/jcmm.17430. PubMed DOI PMC

Oddo L., Paradossi G., Cerroni B., Ben-Harush C., Ariel E., Di Meco F., Ram Z., Grossman R. In vivo biodistribution of engineered lipid microbubbles in rodents. Omega. 2019;4:13371–13381. doi: 10.1021/acsomega.9b01544. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...