Influence of Rehabilitation Aid with Biofeedback on the Rehabilitation Process during Remote Home-Based Rehabilitation
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35897431
PubMed Central
PMC9330706
DOI
10.3390/ijerph19159069
PII: ijerph19159069
Knihovny.cz E-resources
- Keywords
- balance training, biofeedback, home rehabilitation, knee joint, therapeutic telemedicine,
- MeSH
- Biofeedback, Psychology MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Knee Injuries * rehabilitation MeSH
- Postural Balance MeSH
- Telerehabilitation * MeSH
- Exercise Therapy * methods MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Ensuring the regularity and correctness of rehabilitation exercises in the home environment is a prerequisite for successful treatment. This clinical study compares balance therapy in the home environment on a conventional balance mat and an instrumented wobble board, with biofeedback supported by a rehabilitation scheme realized as web-based software that controls the course of rehabilitation remotely. The study included 55 patients with knee injuries. The control group consisted of 25 patients (12 females and 13 males, mean age 39 ± 12 years) and the study group of 30 patients (19 females and 11 males, mean age 40 ± 12 years). Treatment effects were compared using the ICS Balance Platform measurement system. Measurements showed significant differences in the change in ICS Balance platform parameters representing the dynamic stability of the patients. The dynamic stability improved more with the instrumented wobble board. The study did not show an influence of different methods of communication with patients during home-based rehabilitation.
See more in PubMed
Dungl P. Ortopedie. 2nd ed. Grada; Prague, Czech Republic: 2014.
Karakoc Z.B., Colak T.K., Sari Z., Polat M.G. The effect of virtual rehabilitation added to an accelerated rehabilitation program after anterior cruciate ligament reconstruction: A randomized controlled trial. Clin. Exp. Health Sci. 2019;9:124–129. doi: 10.33808/clinexphealthsci.564273. DOI
Di Stasi S., Myer G.D., Hewett T.E. Neuromuscular training to target deficits associated with second anterior cruciate ligament injury. J. Orthop. Sport Phys. 2013;43:777–792. doi: 10.2519/jospt.2013.4693. PubMed DOI PMC
Atkinson H.D., Laver J.M., Sharp E. (vi) Physiotherapy and rehabilitation following soft-tissue surgery of the knee. Orthop. Trauma. 2010;24:129–138. doi: 10.1016/j.mporth.2010.03.006. DOI
Darware M., Naqvi W.M. A case report on physiotherapy rehabilitation accelerating the recovery of older patient with anterior cruciate ligament reconstruction. Med. Sci. 2020;24:1803–1808.
Pereira A., Folgado D., Nunes F., Almeida J., Sousa I. Using inertial sensors to evaluate exercise correctness in electromyography-based home rehabilitation systems; Proceedings of the 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA); Istanbul, Turkey. 26–28 June 2019; Piscataway, NJ, USA: IEEE; 2019.
Giggins O.M., Persson U.M., Caulfield B. Biofeedback in rehabilitation. J. Neuroeng. Rehabil. 2013;10:60. doi: 10.1186/1743-0003-10-60. PubMed DOI PMC
Giggins O.M., Sweeney K.T., Caulfield B. Rehabilitation exercise assessment using inertial sensors: A cross-sectional analytical study. J. Neuroeng. Rehabil. 2014;11:158. doi: 10.1186/1743-0003-11-158. PubMed DOI PMC
Vourganas I., Stankovic V., Stankovic L., Michala A.L. Evaluation of home-based rehabilitation sensing systems with respect to standardised clinical tests. Sensors. 2020;20:26. doi: 10.3390/s20010026. PubMed DOI PMC
Correia F.D., Nogueira A., Magalhaes I., Guimaraes J., Moreira M., Barradas I., Teixeira L., Tulha J., Seabra R., Lains J., et al. Home-based rehabilitation with a novel digital biofeedback system versus conventional in-person rehabilitation after total knee replacement: A feasibility study. Sci. Rep. 2018;8:11299. doi: 10.1038/s41598-018-29668-0. PubMed DOI PMC
Rhim H.C., Lee J.H., Lee S.J., Jeon J.S., Kim G., Lee K.Y., Jang K.M. Supervised rehabilitation may lead to better outcome than home-based rehabilitation up to 1 year after anterior cruciate ligament reconstruction. Medicina. 2021;57:19. doi: 10.3390/medicina57010019. PubMed DOI PMC
Nicolson P.J., Hinman R.S., Kasza J., Bennell K.L. Trajectories of adherence to home-based exercise programs among people with knee osteoarthritis. Osteoarthr. Cartil. 2018;26:S254–S255. doi: 10.1016/j.joca.2018.02.520. PubMed DOI
Dupalová D., Šlachtová M., Doleželová E. Možnosti využití aktivních videoher v rehabilitaci. Rehabil. Phys. Med. 2013;20:135–141.
Kohler F., Schmitz-Rode T., Disselhorst-Klug C. Introducing a feedback training system for guided home rehabilitation. J Neuroeng. Rehabil. 2010;7:2. doi: 10.1186/1743-0003-7-2. PubMed DOI PMC
Milosevic B., Leardini A., Farella E. Kinect and wearable inertial sensors for motor rehabilitation programs at home: State of the art and an experimental comparison. Biomed. Eng. Online. 2020;19:25. doi: 10.1186/s12938-020-00762-7. PubMed DOI PMC
Choi J.S., Kang D.W., Seo J.W., Kim D.H., Yang S.T., Tack G.R. The development and evaluation of a program for leg-strengthening exercises and balance assessment using kinect. J. Phys. Ther. Sci. 2016;28:33–37. doi: 10.1589/jpts.28.33. PubMed DOI PMC
Fusco A., Giancotti G.F., Fuchs P.X., Wagner H., Varalda C., Capranica L., Cortis C. Dynamic balance evaluation: Reliability and validity of a computerized wobble board. J. Strength Cond. Res. 2020;34:1709–1715. doi: 10.1519/JSC.0000000000002518. PubMed DOI
Williams J., Bentman S. An investigation into the reliability and variability of wobble board performance in a healthy population using the smartwobble instrumented wobble board. Phys. Ther. Sport. 2014;15:143–147. doi: 10.1016/j.ptsp.2013.08.003. PubMed DOI
Bizovska L., Janura M., Svoboda Z., Cerny M., Krohova J., Smondrk M. Intra- and inter-session reliability of traditional and entropy-based variables describing stance on a wobble board. Med. Eng. Phys. 2017;50:29–34. doi: 10.1016/j.medengphy.2017.08.017. PubMed DOI
Mohapatra S., Kukkar K.K., Aruin A.S. Support surface related changes in feedforward and feedback control of standing posture. J. Electromyogr. Kinesiol. 2014;24:144–152. doi: 10.1016/j.jelekin.2013.10.015. PubMed DOI PMC
Laessoe U., Svendsen A.W., Christensen M.N., Rasmussen J.R., Gaml A.S. Evaluation of functional ankle instability assessed by an instrumented wobble board. Phys. Ther. Sport. 2019;35:133–138. doi: 10.1016/j.ptsp.2018.12.002. PubMed DOI
Ross S.E., Linens S.W., Wright C.J., Arnold B.L. Balance assessments for predicting functional ankle instability and stable ankles. Gait Posture. 2011;34:539–542. doi: 10.1016/j.gaitpost.2011.07.011. PubMed DOI
Lesinski M., Hortobagyi T., Muehlbauer T., Gollhofer A., Granacher U. Effects of balance training on balance performance in healthy older adults: A systematic review and meta-analysis. Sports Med. 2015;45:1721–1738. doi: 10.1007/s40279-015-0375-y. PubMed DOI PMC
Chang Y.T., Meng L.F., Chang C.J., Lai P.L., Lung C.W., Chern J.S. Effect of postural control demands on early visual evoked potentials during a subjective visual vertical perception task in adolescents with idiopathic scoliosis. Front. Hum. Neurosci. 2017;11:326. doi: 10.3389/fnhum.2017.00326. PubMed DOI PMC
De Maio M., Cortis C., Iannaccone A., da Silva R.A., Fusco A. Association between anthropometric variables, sex, and visual biofeedback in dynamic postural control assessed on a computerized wobble board. Appl. Sci. 2021;11:8370. doi: 10.3390/app11188370. DOI
Van Melick N., van Cingel R.E.H., Brooijmans E., Neeter C., van Tienen T., Hullegie W., Nijhuis-van der Sanden M.W.G. Evidence-based clinical practice update: Practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. Br. J. Sport Med. 2016;50:1506–1515. doi: 10.1136/bjsports-2015-095898. PubMed DOI
Wuest S., Borghese N.A., Pirovano M., Mainetti R., van de Langenberg R., de Bruin E.D. Usability and effects of an exergame-based balance training program. Games Health J. 2014;3:106–114. doi: 10.1089/g4h.2013.0093. PubMed DOI PMC