• This record comes from PubMed

The Use of Artificial Intelligence in Pharmacovigilance: A Systematic Review of the Literature

. 2022 Oct ; 36 (5) : 295-306. [epub] 20220729

Language English Country New Zealand Media print-electronic

Document type Systematic Review, Journal Article

Links

PubMed 35904529
DOI 10.1007/s40290-022-00441-z
PII: 10.1007/s40290-022-00441-z
Knihovny.cz E-resources

INTRODUCTION: Artificial intelligence through machine learning uses algorithms and prior learnings to make predictions. Recently, there has been interest to include more artificial intelligence in pharmacovigilance of products already in the market and pharmaceuticals in development. OBJECTIVE: The aim of this study was to identify and describe the uses of artificial intelligence in pharmacovigilance through a systematic literature review. METHODS: Embase and MEDLINE database searches were conducted for articles published from January 1, 2015 to July 9, 2021 using search terms such as 'pharmacovigilance,' 'patient safety,' 'artificial intelligence,' and 'machine learning' in the title or abstract. Scientific articles that contained information on the use of artificial intelligence in all modalities of patient safety or pharmacovigilance were reviewed and synthesized using a pre-specified data extraction template. Articles with incomplete information and letters to editor, notes, and commentaries were excluded. RESULTS: Sixty-six articles were identified for evaluation. Most relevant articles on artificial intelligence focused on machine learning, and it was used in patient safety in the identification of adverse drug events (ADEs) and adverse drug reactions (ADRs) (57.6%), processing safety reports (21.2%), extraction of drug-drug interactions (7.6%), identification of populations at high risk for drug toxicity or guidance for personalized care (7.6%), prediction of side effects (3.0%), simulation of clinical trials (1.5%), and integration of prediction uncertainties into diagnostic classifiers to increase patient safety (1.5%). Artificial intelligence has been used to identify safety signals through automated processes and training with machine learning models; however, the findings may not be generalizable given that there were different types of data included in each source. CONCLUSION: Artificial intelligence allows for the processing and analysis of large amounts of data and can be applied to various disease states. The automation and machine learning models can optimize pharmacovigilance processes and provide a more efficient way to analyze information relevant to safety, although more research is needed to identify if this optimization has an impact on the quality of safety analyses. It is expected that its use will increase in the near future, particularly with its role in the prediction of side effects and ADRs.

See more in PubMed

Das S, dey A, Pal A, Roy N. Applications of artificial intelligence in machine learning: review and prospect. Int J Comput Appl. 2015;115:31–41.

Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268(1):70–6. PubMed DOI

Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9. PubMed DOI

Macrae C. Governing the safety of artificial intelligence in healthcare. BMJ Qual Saf. 2019;28(6):495–8. PubMed DOI

Grossman LV, Choi SW, Collins S, Dykes PC, O’Leary KJ, Rizer M, et al. Implementation of acute care patient portals: recommendations on utility and use from six early adopters. J Am Med Inf Assoc. 2018;25(4):370–9. DOI

Bates DW, Levine D, Syrowatka A, Kuznetsova M, Craig KJT, Rui A, et al. The potential of artificial intelligence to improve patient safety: a scoping review. NPJ Digit Med. 2021;4(1):54. PubMed DOI PMC

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. PubMed DOI PMC

Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343: d5928. PubMed DOI PMC

Abatemarco D, Perera S, Bao SH, Desai S, Assuncao B, Tetarenko N, et al. Training augmented intelligent capabilities for pharmacovigilance: applying deep-learning approaches to individual case safety report processing. Pharmaceut Med. 2018;32(6):391–401. PubMed PMC

Alvaro N, Conway M, Doan S, Lofi C, Overington J, Collier N. Crowdsourcing Twitter annotations to identify first-hand experiences of prescription drug use. J Biomed Inform. 2015;58:280–7. PubMed DOI

Basile AO, Yahi A, Tatonetti NP. Artificial intelligence for drug toxicity and safety. Trends Pharmacol Sci. 2019;40(9):624–35. PubMed DOI PMC

Baumgartner M, Eggerth A, Ziegl A, Hayn D, Schreier G. Experimenting with generative adversarial networks to expand sparse physiological time-series data. Stud Health Technol Inform. 2020;271:248–55. PubMed

Bean DM, Wu H, Iqbal E, Dzahini O, Ibrahim ZM, Broadbent M, et al. Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records. Sci Rep. 2017;7(1):16416. PubMed DOI PMC

Ben Abacha A, Chowdhury MFM, Karanasiou A, Mrabet Y, Lavelli A, Zweigenbaum P. Text mining for pharmacovigilance: using machine learning for drug name recognition and drug-drug interaction extraction and classification. J Biomed Inf. 2015;58:122–32. DOI

Benin AL, Fodeh SJ, Lee K, Koss M, Miller P, Brandt C. Electronic approaches to making sense of the text in the adverse event reporting system. J Healthc Risk Manag. 2016;36(2):10–20. PubMed DOI

Bouzillé G, Morival C, Westerlynck R, Lemordant P, Chazard E, Lecorre P, et al. An Automated detection system of drug-drug interactions from electronic patient records using big data analytics. Stud Health Technol Inf. 2019;264:45–9.

Calix RA, Gupta R, Gupta M, Jiang K, editors. Deep gramulator: improving precision in the classification of personal health-experience tweets with deep learning. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2017;1154–1159.

Chandak P, Tatonetti NP. Using machine learning to identify adverse drug effects posing increased risk to women. Patterns (N Y). 2020;1(7):100108. DOI

Chauvet R, Bousquet C, Lillo-Lelouet A, Zana I, Ben Kimoun I, Jaulent MC. Classification of the severity of adverse drugs reactions. Stud Health Technol Inf. 2020;270:1227–8.

Chen J, Lalor J, Liu W, Druhl E, Granillo E, Vimalananda V, et al. Detecting Hypoglycemia Incidents Reported in Patients’ Secure Messages: Using Cost-sensitive Learning and Oversampling to Reduce Data Imbalance (Preprint). J Med Internet Res. 2019;21(3):e11990.

Chen Z, Zhang H, George T, Prosperi M, Guo Y, Braithwaite D, et al. Abstract PO-071: simulation of colorectal cancer clinical trials using real-world data and machine learning. Clin Cancer Res. 2021;27(5 Supplement):PO-071. DOI

Cocos A, Fiks AG, Masino AJ. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts. J Am Med Inf Assoc. 2017;24(4):813–21. DOI

Colón-Ruiz C, Segura-Bedmar I. Comparing deep learning architectures for sentiment analysis on drug reviews. J Biomed Inf. 2020;110:103539. DOI

Comfort S, Perera S, Hudson Z, Dorrell D, Meireis S, Nagarajan M, et al. Sorting through the safety data haystack: using machine learning to identify individual case safety reports in social-digital media. Drug Saf. 2018;41(6):579–90. PubMed DOI PMC

Correia Pinheiro L, Durand J, Dogné JM. An application of machine learning in pharmacovigilance: estimating likely patient genotype from phenotypical manifestations of fluoropyrimidine toxicity. Clin Pharmacol Ther. 2020;107(4):944–7. PubMed DOI PMC

Courtois É, Pariente A, Salvo F, Volatier É, Tubert-Bitter P, Ahmed I. Propensity score-based approaches in high dimension for pharmacovigilance signal detection: an empirical comparison on the French spontaneous reporting database. Front Pharmacol. 2018;9:1010. PubMed DOI PMC

Dandala B, Joopudi V, Devarakonda M. Adverse drug events detection in clinical notes by jointly modeling entities and relations using neural networks. Drug Saf. 2019;42(1):135–46. PubMed DOI

Daniel C, Kalra D. Section editors for the IYSoCRI. Clinical research informatics. Yearb Med Inf. 2020;29(1):203–7. DOI

Davazdahemami B, Delen D. A chronological pharmacovigilance network analytics approach for predicting adverse drug events. J Am Med Inform Assoc. 2018;25(10):1311–21. PubMed DOI PMC

De Pretis F, Landes J, Peden W. Artificial intelligence methods for a Bayesian epistemology-powered evidence evaluation. J Eval Clin Pract. 2021;27(3):504–12. PubMed DOI

Desai S, Chan K, Bannout K, Mingle E, Freeman J, Parikh U, et al. A novel approach to standardizing data & detecting duplicates across adverse event data sources using machine learning. Drug Saf. 2018;41(11):1246–7.

Desai SME, Egan B, Gulati R, Freeman J. A framework for leveraging emerging technologies in pharmacovigilance. Drug Saf. 2018;41(11):1223–4.

Dewulf P, Stock M, De Baets B. Cold-start problems in data-driven prediction of drug-drug interaction effects. Pharmaceuticals. 2021;14(5):429. PubMed DOI PMC

El-Allaly ED, Sarrouti M, En-Nahnahi N, Ouatik El Alaoui S. An adverse drug effect mentions extraction method based on weighted online recurrent extreme learning machine. Comput Methods Programs Biomed. 2019;176:33–41. PubMed DOI

Eshleman R, Singh R. Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams. BMC Bioinform. 2016;17(13):335. DOI

Evans HP, Anastasiou A, Edwards A, Hibbert P, Makeham M, Luz S, et al. Automated classification of primary care patient safety incident report content and severity using supervised machine learning (ML) approaches. Health Inf J. 2019;26(4):3123–39. DOI

Fan Y, He L, Zhang R. Evaluating automatic methods to extract patients' supplement use from clinical reports. Proceedings IEEE International Conference on Bioinformatics and Biomedicine. 2017;2017:1258-61

Fan Y, Zhang R. Using natural language processing methods to classify use status of dietary supplements in clinical notes. BMC Med Inf Decis Mak. 2018;18(2):51. DOI

Fong A, Behzad S, Pruitt Z, Ratwani RM. A machine learning approach to reclassifying miscellaneous patient safety event reports. J Patient Saf. 2021;17(8):e829–33. PubMed DOI

Fong A, Harriott N, Walters DM, Foley H, Morrissey R, Ratwani RR. Integrating natural language processing expertise with patient safety event review committees to improve the analysis of medication events. Int J Med Inf. 2017;104:120–5. DOI

Foufi V, Ing Lorenzini K, Goldman JP, Gaudet-Blavignac C, Lovis C, Samer C. Automatic classification of discharge letters to detect adverse drug reactions. Stud Health Technol Inf. 2020;270:48–52.

Gartland A, Bate A, Painter JL, Casperson TA, Powell GE. Developing crowdsourced training data sets for pharmacovigilance intelligent automation. Drug Saf. 2021;44(3):373–82. PubMed DOI

Gavrielov-Yusim N, Kürzinger ML, Nishikawa C, Pan C, Pouget J, Epstein LB, et al. Comparison of text processing methods in social media-based signal detection. Pharmacoepidemiol Drug Saf. 2019;28(10):1309–17. PubMed DOI

Gupta J, Patrick J, Poon S. Clinical safety incident taxonomy performance on C4.5 decision tree and random forest. Stud Health Technol Inform. 2019;266:83–8. PubMed

Gupta S, Pawar S, Ramrakhiyani N, Palshikar GK, Varma V. Semi-supervised recurrent neural network for adverse drug reaction mention extraction. BMC Bioinform. 2018;19(8):212.

Henriksson A, Zhao J, Dalianis H, Boström H. Ensembles of randomized trees using diverse distributed representations of clinical events. BMC Med Inf Decis Mak. 2016;16(2):69. DOI

Jagannatha AN, Yu H. Bidirectional RNN for medical event detection in electronic health records. Proc Conf. 2016;2016:473–82. PubMed PMC

Kalaiselvan V, Sharma A, Gupta SK. “Feasibility test and application of AI in healthcare”—with special emphasis in clinical, pharmacovigilance, and regulatory practices. Health Technol. 2021;11(1):1–15. DOI

Kreimeyer K, Dang O, Spiker J, Muñoz MA, Rosner G, Ball R, et al. Feature engineering and machine learning for causality assessment in pharmacovigilance: Lessons learned from application to the FDA Adverse Event Reporting System. Comput Biol Med. 2021;135: 104517. PubMed DOI

Laves M-H, Ihler S, Ortmaier T, Kahrs LA. Quantifying the uncertainty of deep learning-based computer-aided diagnosis for patient safety. Curr Dir Biomed Eng. 2019;5:223–6. DOI

Letinier LJJ, Miremont G, Bel-Letoile A, Salvo F, Rouby F, et al. Machine learning and semantic information for unstructured healthcare data: Comparison of methods through the automatic analysis of adverse drug reaction reports. MAI TAI study. Fundam Clin Pharmacol. 2021;35(SUPPL 1):20.

Li F, Liu W, Yu H. Extraction of information related to adverse drug events from electronic health record notes: design of an end-to-end model based on deep learning. JMIR Med Inf. 2018;6(4): e12159. DOI

Li H, Yang M, Chen Q, Tang B, Wang X, Yan J. Chemical-induced disease extraction via recurrent piecewise convolutional neural networks. BMC Med Inf Decis Mak. 2018;18(2):60. DOI

Liang C, Gong Y. Enhancing patient safety event reporting by K-nearest neighbor classifier. Stud Health Technol Inf. 2015;218:93–9.

Lien F, Wang HY, Lu JJ, Wen YH, Chiueh TS. Predicting 2-day mortality of thrombocytopenic patients based on clinical laboratory data using machine learning. Med Care. 2021;59(3):245–50. PubMed DOI

Liu F, Pradhan R, Druhl E, Freund E, Liu W, Sauer BC, et al. Learning to detect and understand drug discontinuation events from clinical narratives. J Am Med Inf Assoc. 2019;26(10):943–51. DOI

Marella WM, Sparnon E, Finley E. Screening electronic health record-related patient safety reports using machine learning. J Patient Saf. 2017;13(1):31–6. PubMed DOI

Ménard T, Barmaz Y, Oettinghaus B, Bowling R, Popko L. Enabling data-driven clinical quality assurance: predicting adverse event reporting in clinical trials using machine learning. Drug Saf. 2019;42(9):1045–53.

Mockute R, Desai S, Perera S, Assuncao B, Danysz K, Tetarenko N, et al. Artificial intelligence within pharmacovigilance: a means to identify cognitive services and the framework for their validation. Pharmaceut Med. 2019;33(2):109–20. PubMed

Mower J, Cohen T, Subramanian D. Complementing observational signals with literature-derived distributed representations for post-marketing drug surveillance. Drug Saf. 2020;43(1):67–77. PubMed DOI PMC

Mower J, Subramanian D, Cohen T. Learning predictive models of drug side-effect relationships from distributed representations of literature-derived semantic predications. J Am Med Inf Assoc. 2018;25(10):1339–50. DOI

Negi K, Pavuri A, Patel L, Jain C. A novel method for drug-adverse event extraction using machine learning. Inf Med Unlocked. 2019;17: 100190. DOI

Nikfarjam A, Sarker A, O’Connor K, Ginn R, Gonzalez G. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inf Assoc. 2015;22(3):671–81. DOI

Noguchi Y, Tachi T, Teramachi H. Subset analysis for screening drug-drug interaction signal using pharmacovigilance database. Pharmaceutics. 2020;12(8):762. DOI PMC

Qiu Y, Zhang Y, Deng Y, Liu S, Zhang W. A comprehensive review of computational methods for drug-drug interaction detection. IEEE/ACM Trans Comput Biol Bioinform. 2021;3:7487.

Salathé M. Digital pharmacovigilance and disease surveillance: combining traditional and big-data systems for better public health. J Infect Dis. 2016;214(suppl_4):S399–403. PubMed DOI PMC

Sarker A, Gonzalez G. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. J Biomed Inform. 2015;53:196–207. PubMed DOI

Schmider J, Kumar K, LaForest C, Swankoski B, Naim K, Caubel PM. Innovation in pharmacovigilance: use of artificial intelligence in adverse event case processing. Clin Pharmacol Ther. 2019;105(4):954–61. PubMed DOI

Simon ST, Mandair D, Tiwari P, Rosenberg MA. Prediction of drug-induced long QT syndrome using machine learning applied to harmonized electronic health record data. J Cardiovasc Pharmacol Ther. 2021;26(4):335–40. PubMed DOI PMC

Thompson P, Daikou S, Ueno K, Batista-Navarro R, Ji T, Ananiadou S. Annotation and detection of drug effects in text for pharmacovigilance. J Cheminform. 2018;10(1):37. PubMed DOI PMC

Wang M, Ma X, Si J, Tang H, Wang H, Li T, et al. Adverse drug reaction discovery using a tumor-biomarker knowledge graph. Front Genet. 2021;11:625659.

Yang J, Wang L, Phadke NA, Wickner PG, Mancini CM, Blumenthal KG, et al. Development and validation of a deep learning model for detection of allergic reactions using safety event reports across hospitals. JAMA. 2020;3(11):e2022836-e.

Yang X, Bian J, Gong Y, Hogan WR, Wu Y. MADEx: a system for detecting medications, adverse drug events, and their relations from clinical notes. Drug Saf. 2019;42(1):123–33. PubMed DOI PMC

Zhao J, Henriksson A, Asker L, Boström H. Predictive modeling of structured electronic health records for adverse drug event detection. BMC Med Inf Decis Mak. 2015;15 Suppl 4(Suppl 4):S1.

Sujan MBC, Salmon P, Pool R, Chozos N. Human factors and ergonomics in healthcare AI. Chartered Institute of Ergonomics and Human Factors; 2021.

Lewis DJ, McCallum JF. Utilizing advanced technologies to augment pharmacovigilance systems: challenges and opportunities. Ther Innov Regul Sci. 2020;54(4):888–99. PubMed DOI

Artificial Intelligence in Health Care: Benefits and Challenges of Technologies to Augment Patient Care. US Government Accountability Office. 2020. https://www.gao.gov/products/gao-21-7sp . Accessed 10 June 2022.

Laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending certain union legislative acts. EUR-LEX. 2021. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206 . Accessed 10 June 2022.

Kassekert R, Grabowski N, Lorenz D, Schaffer C, Kempf D, Roy P, et al. Industry perspective on artificial intelligence/machine learning in pharmacovigilance. Drug Saf. 2022;45(5):439–48. PubMed DOI PMC

Lee J-Y, Lee Y-S, Kim DH, Lee HS, Yang BR, Kim MG. The use of social media in detecting drug safety-related new black box warnings, labeling changes, or withdrawals: scoping review. JMIR Public Health Surveill. 2021;7(6): e30137. PubMed DOI PMC

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...