Isolation and characterization of thermostable and alkali-tolerant cellulase from litter endophytic fungus Bartalinia pondoensis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35906455
DOI
10.1007/s12223-022-00991-4
PII: 10.1007/s12223-022-00991-4
Knihovny.cz E-zdroje
- Klíčová slova
- Agni fungi, Bartalinia pondoensis, Cellulase, Litter endophytic fungi, Thermal stability,
- MeSH
- alkálie MeSH
- Ascomycota * metabolismus MeSH
- celulasa * chemie MeSH
- celulasy * MeSH
- endofyty metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkálie MeSH
- celulasa * MeSH
- celulasy * MeSH
Endophytic fungi in plant tissues produce a wide range of secondary metabolites and enzymes, which exhibit a variety of biological activities. In the present study, litter endophytic fungi were isolated from a fire-prone forest and screened for thermostable cellulases. Among nine endophytic fungi tested, two isolates, Bartalinia pondoensis and Phoma sp., showed the maximum cellulase activity. Bartalinia pondoensis was further selected for its cellulase production and characterization. Among the carbon and nitrogen sources tested, maximum cellulase production was observed with maltose and yeast extract, and the eucalyptus leaves and rice bran served as the best natural substrates. The cellulase activity increased with increasing temperature, with maximum activity recorded at 100 °C. The maximum CMCase activity was observed between pH 6.0 and 7.0 and retained 80% of its activity in the pH range of 8-10. Partially purified cellulase of B. pondoensis retained 50% of its activity after 2 h of incubation at 60 °C, 80 °C and 100 °C. These results suggest that litter endophytic fungus B. pondoensis is a potential source for the production of thermostable and alkali-tolerant cellulase.
Zobrazit více v PubMed
Abo-state MAM, Hammad AI, Swelim M, Gannam RB (2010) Enhanced production of cellulase(s) by Aspergillus spp. isolated from agriculture wastes by solid state fermentation. American-Eurasian J Agr Environ Sci 8:402–410
Acharya PB, Acharya DK, Modi HA (2008) Optimization for cellulase production by using sawdust as substrate. Afr J Biotechnol 7:4147–4152
Ali UF, Saad H (2008) Production and partial purification of cellulase complex by Aspergillus niger and A. nidulans grown on water Hyacinth blend. J Appl Sci Res 47:875–891
Andrade JP, Bispo AS, Marbach PA, do Nascimento RP (2011) Production and partial characterization of cellulases from Trichoderma sp. IS-05 isolated from sandy coastal plains of Northeast Brazil. Enzyme Res 167248. https://doi.org/10.4061/2011/167248
Ariffin H, Abdullah N, Umi Kalsom MS, Shirai Y, Hassan MA (2006) Production and characterization of cellulase by Bacillus pumilus EB3. Int J Engineer Technol 3:47–53
Bhadra F, Gupta A, Vasundhara M, Reddy MS (2022) Endophytic fungi: a potential source of industrial enzyme producers. 3Biotech 12:86. https://doi.org/10.1007/s13205-022-03145-y
Bhavna M, Jayant M (2010) Use of agricultural waste of cellulose production by Aspergillus niger with submerged and solid state fermentation. Bionano Frontier 2:189–192. https://doi.org/10.1590/S1517-83822011000300033 DOI
Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact 15:106. https://doi.org/10.1186/s12934-016-0507-6 PubMed DOI PMC
Bok JD, Yernool DA, Eveleigh DE (1998) Purification, characterization and molecular analysis of thermostable cellulases CelA and CelB from Thermologa neapolitana. Appl Environ Microbiol 64:4774–4781. https://doi.org/10.1128/AEM.64.12.4774-4781.1998 PubMed DOI PMC
Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2015) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206. https://doi.org/10.1016/j.fuproc.2016.12.007 DOI
Chen HZ, Liu ZH (2015) Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J 10:866–885. https://doi.org/10.1002/biot.201400705 PubMed DOI
Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opinion Biotechnol 4:438–443. https://doi.org/10.1016/s0958-1669(03)00099-5 DOI
Corrêa RCG, Rhoden SA, Mota TR, Azevedo JL, Pamphile JA, de Souza CGM, Polizeli MLTM, Bracht A, Peralta RM (2014) Endophytic fungi: expanding the arsenal of industrial enzyme producers. J Ind Microbiol Biotechnol 41:1467–1478. https://doi.org/10.1007/s10295-014-1496-2 PubMed DOI
Dashtban M, Buchkowaski R, Qin W (2011) Effect of different carbon sources on cellulase production by Hypocrea jecorina (Trichoderma reesei) strains. Int J Biochem Mol Biol 2:274–286 PubMed PMC
de Almeida MN, Guimarães VM, Bischoff KM, Falkoski DL, Pereira OL, Gonçalves DS, de Rezende ST (2011) Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis. Appl Biochem Biotechnol 165:594–610. https://doi.org/10.1007/s12010-011-9278-z PubMed DOI
Druzhinina IS, Kubicek CP (2017) Genetic engineering of Trichoderma reesei cellulases and their production. Microb Biotechnol 10:1485–1499. https://doi.org/10.1111/1751-7915.12726 PubMed DOI PMC
Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268. https://doi.org/10.1351/pac198759020257 DOI
Govinda Rajulu MB, Lai LB, Murali TS, Gopalan V, Suryanarayanan TS (2014) Several fungi from fire-prone forests of southern India can utilize furaldehydes. Mycol Progress 13:1049–1056. https://doi.org/10.1007/s11557-014-0992-0 DOI
Haung XP, Monk C (2004) Purification and characterization of a cellulase from a newly isolated thermophilic aerobic bacterium Caldibacillus cellulovorans gen. nov.sp. World J Microbiol Biotechnol 20:85–92 DOI
Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technol 91:153–156. https://doi.org/10.1016/s0960-8524(03)00172-x DOI
Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48. https://doi.org/10.1016/j.biortech.2015.08.085 PubMed DOI
Kumar B, Bhardwaj N, Alam A, Agrawal K, Prasad H, Verma P (2018) Production, purification and characterization of an acid/alkali and thermotolerant cellulase from Schizophyllum commune NAIMCC-F-03379 and its application in hydrolysis of lignocellulosic wastes. AMB Exp 8:173. https://doi.org/10.1186/s13568-018-0696-y DOI
Kumaresan V, Suryanarayanan TS (2002) Endophyte assemblages in young mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:81–91
Laemmli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0 PubMed DOI
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275 PubMed DOI
Mandels M, Weber J (1969) Production of Cellulases Adv Chem Ser 95:391–414
Manganyi MC, Ateba CN (2020) Untapped potentials of endophytic fungi: a review of novel bioactive compounds with biological applications. Microorganisms 8:1934. https://doi.org/10.3390/microorganisms8121934 DOI PMC
Marques NP, Pereira JS, Gomes E, Silva R, Araújo AR, Ferreira H, Rodrigues A, Dussán KJ, Bocchini DA (2018) Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind Crop Product 122:66–75. https://doi.org/10.1016/j.indcrop.2018.05.022 DOI
Mishra R, Kushveer JS, Revanthbabu P, Sarma VV (2019) Endophytic fungi and their enzymatic potential. In: Singh BP (ed) Advances in endophytic fungal research, fungal biology. https://doi.org/10.1007/978-3-030-03589-1_14
Narasimha G, Sridevi A, Viswanath B, Subhosh M, Reddy R (2006) Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. Afr J Biotechnol 5:472–476
Patel AK, Singhania RR, Sim SJ, Pandey A (2019) Thermostable cellulases: current status and perspectives. Bioresource Technol 279:385–392. https://doi.org/10.1016/j.biortech.2019.01.049 DOI
Picart P, Diaz P, Pastor FI (2007) Cellulases from two penicillium sp. strains isolated from subtropical forest soil: production and characterization. Lett Appl Microbiol 45:108–113. https://doi.org/10.1111/j.1472-765X.2007.02148.x PubMed DOI
Prakash CP, Thirumalai E, Govinda Rajulu MB, Thirunavukkarasu N, Suryanarayanan TS (2015) Ecology and diversity of leaf litter fungi during early-stage decomposition in a seasonally dry tropical forest. Fungal Ecol 17:103–113. https://doi.org/10.1016/j.funeco.2015.05.004 DOI
Ratanakhanokchai K, Kyu KL, Tanticharoen M (1999) Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp strain K-1. Appl Environ Microbiol 65:694–697. https://doi.org/10.1128/aem.65.2.694-697.1999 PubMed DOI PMC
Reddy MS, Murali TS, Suryanarayanan TS, Govinda Rajulu MB, Thirunavukkarasu N (2016) Pestalotiopsis species occur as generalist endophytes in trees of Western Ghats forests of southern India. Fungal Ecol 24:70–75. https://doi.org/10.1016/j.funeco.2016.09.002 DOI
Rohrmann S, Molitoris HP (2002) Screening for wood-degrading enzymes in marine fungi. Can J Bot 70:2116–2123. https://doi.org/10.1139/b92-263 DOI
Rosa EQC, Edgar BL, Edgar DG, Alfredo M, Jorge FM, Claudia MA (2009) Characterization of cellulolytic activities of Bjerkandera adusta and Pycnoporus sanguineus on solid wheat straw medium. Electronic J Biotechnol 12. https://doi.org/10.2225/vol12-issue4-fulltext-3
Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686. https://doi.org/10.1017/S095375620500273X PubMed DOI
Shafique S, Bajwa R (2009) Cellulase biosynthesis by selected Trichoderma species. Pak J Bothechn 41:907–916
Shrestha P, Szaro TM, Bruns TD, Taylor JW (2011) Systematic search for cultivatable fungi that best deconstruct cell walls of Miscanthus and sugarcane in the field. Appl Environ Microbiol 77:5490–5504. https://doi.org/10.1128/AEM.02996-10 PubMed DOI PMC
Silva RR (2017) Bacterial and fungal proteolytic enzymes: production, catalysis and potential applications. Appl Biochem Biotechnol 183:1–19. https://doi.org/10.1007/s12010-017-2427-2 PubMed DOI
Singh A, Bajar S, Devi A, Pant D (2021) An overview on the recent developments in fungal cellulase production and their industrial applications. Bioresource Technol Rep 14:100652. https://doi.org/10.1016/j.biteb.2021.100652 DOI
Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3Biotech 6:174. https://doi.org/10.1007/s13205-016-0485-8
Song JM, Wei DZ (2010) Production and characterization of cellulases and xylanases of Cellulosimicrobium cellulans grown in pretreated and extracted bagasse and minimal nutrient medium M9. Biomass Bioenergy 34:1930–1934. https://doi.org/10.1016/j.biombioe.2010.08.010 DOI
Suryanarayanan TS, Govinda Rajulu MB, Thirumalai E, Reddy MS, Money NP (2011) Agni’s fungi: heat–resistant spores from the Western Ghats, southern India. Fungal Biol 115:833–838. https://doi.org/10.1016/j.funbio.2011.06.011 PubMed DOI
Suryanarayanan TS, Thirunavukkarasu N, Govinda Rajulu MB, Gopalan V (2012) Fungal endophytes: an untapped source of biocatalysts. Fungal Divers 54:19–30. https://doi.org/10.1007/s13225-012-0168-7 DOI
Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120 PubMed DOI PMC
Van Kan JAL, van den Ackerveken GFJM, de Wit PJGM (1991) Cloning and characterization of the cDNA of avirulence avr9 of the fungal pathogen Cladosporium fulvum, the casual agent of tomato leaf mold. Mol Plante Microbe Interact 4:52–59
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCRProtocols: a guide to methods and applications. Academic Press, New York, pp 315–322
Yang H, Li J, Du G, Liu L (2017) Microbial production and molecular engineering of industrial enzymes: challenges and strategies. In: Brahmachari G (ed) Biotechnology of microbial enzymes, production, biocatalysis and industrial applications. Academic Press, pp 151–165
Yang YH, Wang BC, Wang QH, Xiang LJ, Duan CR (2004) Research on solid-state fermentation on rice chaff with a microbial consortium. Colloids Surf B Biointerfaces 34:1–6. https://doi.org/10.1016/j.colsurfb.2003.10.009 PubMed DOI