Reaction Mechanism of Human PAICS Elucidated by Quantum Chemical Calculations
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35914774
PubMed Central
PMC9376930
DOI
10.1021/jacs.2c05072
Knihovny.cz E-resources
- MeSH
- Catalytic Domain MeSH
- Aspartic Acid * MeSH
- Humans MeSH
- Ribonucleotides * chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aspartic Acid * MeSH
- Ribonucleotides * MeSH
Human PAICS is a bifunctional enzyme that is involved in the de novo purine biosynthesis, catalyzing the conversion of aminoimidazole ribonucleotide (AIR) into N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR). It comprises two distinct active sites, AIR carboxylase (AIRc) where the AIR is initially converted to carboxyaminoimidazole ribonucleotide (CAIR) by reaction with CO2 and SAICAR synthetase (SAICARs) in which CAIR then reacts with an aspartate to form SAICAR, in an ATP-dependent reaction. Human PAICS is a promising target for the treatment of various types of cancer, and it is therefore of high interest to develop a detailed understanding of its reaction mechanism. In the present work, density functional theory calculations are employed to investigate the PAICS reaction mechanism. Starting from the available crystal structures, two large models of the AIRc and SAICARs active sites are built and different mechanistic proposals for the carboxylation and phosphorylation-condensation mechanisms are examined. For the carboxylation reaction, it is demonstrated that it takes place in a two-step mechanism, involving a C-C bond formation followed by a deprotonation of the formed tetrahedral intermediate (known as isoCAIR) assisted by an active site histidine residue. For the phosphorylation-condensation reaction, it is shown that the phosphorylation of CAIR takes place before the condensation reaction with the aspartate. It is further demonstrated that the three active site magnesium ions are involved in binding the substrates and stabilizing the transition states and intermediates of the reaction. The calculated barriers are in good agreement with available experimental data.
Department of Biochemistry and Biophysics Stockholm University SE 10691 Stockholm Sweden
Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE 10691 Stockholm Sweden
See more in PubMed
Hartman S. C.; Buchanan J. M. Biosynthesis of the purines. XXVI. The identification of the formyl donors of the transformylation reactions. J. Biol. Chem. 1959, 234, 1812–1816. 10.1016/S0021-9258(18)69931-4. PubMed DOI
Lukens L. N.; Buchanan J. M. Biosynthesis of the purines. XXIV. The enzymatic synthesis of 5-amino-1-ribosyl-4-imidazolecarboxylic acid 5′-phosphate from 5-amino-1-ribosylimidazole 5′-phosphate and carbon dioxide. J. Biol. Chem. 1959, 234, 1799–1805. 10.1016/S0021-9258(18)69929-6. PubMed DOI
Yin J.; Ren W.; Huang X.; Deng J.; Li T.; Yin Y. Potential mechanisms connecting purine metabolism and cancer therapy. Front. Immunol. 2018, 9, 169710.3389/fimmu.2018.01697. PubMed DOI PMC
Sun W.; Zhang K.; Zhang X.; Lei W.; Xiao T.; Ma J.; Guo S.; Shao S.; Zhang H.; Liu Y.; Yuan J.; Hu Z.; Ma Y.; Feng X.; Hu S.; Zhou J.; Cheng S.; Gao Y. Identification of differentially expressed genes in human lung squamous cell carcinoma using suppression subtractive hybridization. Cancer Lett. 2004, 212, 83–93. 10.1016/j.canlet.2004.03.023. PubMed DOI
Serão N. V.; Delfino K. R.; Southey B. R.; Beever J. E.; Rodriguez-Zas S. L. Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival. BMC Med. Genomics 2011, 4, 4910.1186/1755-8794-4-49. PubMed DOI PMC
Cifola I.; Pietrelli A.; Consolandi C.; Severgnini M.; Mangano E.; Russo V.; De Bellis G.; Battaglia C. Comprehensive genomic characterization of cutaneous malignant melanoma cell lines derived from metastatic lesions by whole-exome sequencing and SNP array profiling. PLoS One 2013, 8, e6359710.1371/journal.pone.0063597. PubMed DOI PMC
Eißmann M.; Schwamb B.; Melzer I. M.; Moser J.; Siele D.; Kohl U.; Rieker R. J.; Wachter D. L.; Agaimy A.; Herpel E.; Baumgarten P.; Mittelbronn M.; Rakel S.; Kogel D.; Bohm S.; Gutschner T.; Diederichs S.; Zornig M. A functional yeast survival screen of tumor-derived cDNA libraries designed to identify anti-apoptotic mammalian oncogenes. PLoS One 2013, 8, e6487310.1371/journal.pone.0064873. PubMed DOI PMC
Barfeld S. J.; Fazli L.; Persson M.; Marjavaara L.; Urbanucci A.; Kaukoniemi K. M.; Rennie P. S.; Ceder Y.; Chabes A.; Visakorpi T.; Mills I. G. Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer. Oncotarget 2015, 6, 12587–12602. 10.18632/oncotarget.3494. PubMed DOI PMC
Goswami M. T.; Chen G.; Chakravarthi B. V.; Pathi S. S.; Anand S. K.; Carskadon S. L.; Giordano T. J.; Chinnaiyan A. M.; Thomas D. G.; Palanisamy N.; Beer D. G.; Varambally S. Role and regulation of coordinately expressed de novo purine biosynthetic enzymes PPAT and PAICS in lung cancer. Oncotarget 2015, 6, 23445–23461. 10.18632/oncotarget.4352. PubMed DOI PMC
Chakravarthi B. V. S. K.; Goswami M. T.; Pathi S. S.; Dodson M.; Chandrashekar D. S.; Agarwal S.; Nepal S.; Hodigere Balasubramanya S. A.; Siddiqui J.; Lonigro R. J.; Chinnaiyan A. M.; Kunju L. P.; Palanisamy N.; Varambally S. Expression and role of PAICS, a de novo purine biosynthetic gene in prostate cancer. Prostate 2017, 77, 10–21. 10.1002/pros.23243. PubMed DOI
Meng M.; Chen Y.; Jia J.; Li L.; Yang S. Knockdown of PAICS inhibits malignant proliferation of human breast cancer cell lines. Biol. Res. 2018, 51, 24.10.1186/s40659-018-0172-9. PubMed DOI PMC
Chakravarthi B.; Rodriguez Pena M. D. C.; Agarwal S.; Chandrashekar D. S.; Hodigere Balasubramanya S. A.; Jabboure F. J.; Matoso A.; Bivalacqua T. J.; Rezaei K.; Chaux A.; Grizzle W. E.; Sonpavde G.; Gordetsky J.; Netto G. J.; Varambally S. A. Role for de novo purine metabolic enzyme PAICS in bladder cancer progression. Neoplasia 2018, 20, 894–904. 10.1016/j.neo.2018.07.006. PubMed DOI PMC
Zhou S.; Yan Y.; Chen X.; Wang X.; Zeng S.; Qian L.; Wei J.; Yang X.; Zhou Y.; Gong Z.; Xu Z. Roles of highly expressed PAICS in lung adenocarcinoma. Gene 2019, 692, 1–8. 10.1016/j.gene.2018.12.064. PubMed DOI
Huang Q.; Liu F.; Shen J. Bioinformatic validation identifies candidate key genes in diffuse large-B cell lymphoma. Pers. Med. 2019, 16, 313–323. 10.2217/pme-2018-0068. PubMed DOI
Agarwal S.; Chakravarthi B.; Kim H. G.; Gupta N.; Hale K.; Balasubramanya S. A. H.; Oliver P. G.; Thomas D. G.; Eltoum I. A.; Buchsbaum D. J.; Manne U.; Varambally S. PAICS, a de novo purine biosynthetic enzyme, is overexpressed in pancreatic cancer and is involved in its progression. Transl. Oncol. 2020, 13, 10077610.1016/j.tranon.2020.100776. PubMed DOI PMC
Gallenne T.; Ross K. N.; Visser N. L.; Salony; Desmet C. J.; Wittner B. S.; Wessels L. F. A.; Ramaswamy S.; Peeper D. S. Systematic functional perturbations uncover a prognostic genetic network driving human breast cancer. Oncotarget 2017, 8, 20572–20587. 10.18632/oncotarget.16244. PubMed DOI PMC
Agarwal S.; Chakravarthi B.; Behring M.; Kim H. G.; Chandrashekar D. S.; Gupta N.; Bajpai P.; Elkholy A.; Balasubramanya S. A. H.; Hardy C.; Diffalha S. A.; Varambally S.; Manne U. PAICS, a purine nucleotide metabolic enzyme, is involved in tumor growth and the metastasis of colorectal cancer. Cancers 2020, 12, 77210.3390/cancers12040772. PubMed DOI PMC
Huang N.; Xu C.; Deng L.; Li X.; Bian Z.; Zhang Y.; Long S.; Chen Y.; Zhen N.; Li G.; Sun F. PAICS contributes to gastric carcinogenesis and participates in DNA damage response by interacting with histone deacetylase 1/2. Cell Death Dis. 2020, 11, 50710.1038/s41419-020-2708-5. PubMed DOI PMC
Cheung C. H. Y.; Hsu C. L.; Tsuei C. Y.; Kuo T. T.; Huang C. T.; Hsu W. M.; Chung Y. H.; Wu H. Y.; Hsu C. C.; Huang H. C.; Juan H. F. Combinatorial targeting of MTHFD2 and PAICS in purine synthesis as a novel therapeutic strategy. Cell Death Dis. 2019, 10, 78610.1038/s41419-019-2033-z. PubMed DOI PMC
Yamauchi T.; Miyawaki K.; Semba Y.; Takahashi M.; Izumi Y.; Nogami J.; Nakao F.; Sugio T.; Sasaki K.; Pinello L.; Bauer D. E.; Bamba T.; Akashi K.; Maeda T. Targeting leukemia-specific dependence on the de novo purine synthesis pathway. Leukemia 2022, 36, 383–393. 10.1038/s41375-021-01369-0. PubMed DOI
Mackenzie G.; Shaw G.; Thomas S. E. Synthesis of analogues of 5-aminoimidazole ribonucleotides and their effects as inhibitors and substrates of the enzymes, phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase involved in the biosynthesis of purine nucleotides de novo. J. Chem. Soc., Chem. Commun. 1976, 12, 453–455. 10.1039/C39760000453. DOI
Firestine S. M.; Jo Davisson V. A tight binding inhibitor of 5-aminoimidazole ribonucleotide carboxylase. J. Med. Chem. 1993, 36, 3484–3486. 10.1021/jm00074a033. PubMed DOI
Firestine S. M.; Wu W.; Youn H.; Jo Davisson V. Interrogating the mechanism of a tight binding inhibitor of AIR carboxylase. Bioorg. Med. Chem. 2009, 17, 794–803. 10.1016/j.bmc.2008.11.057. PubMed DOI PMC
Ravi G. R. R.; Biswal J.; Kanagarajan S.; Jeyakanthan J. Exploration of N5-CAIR mutase novel inhibitors from Pyrococcus horikoshii OT3: a computational study. J. Comput. Biol. 2019, 26, 457–472. 10.1089/cmb.2018.0248. PubMed DOI
Streeter C. C.; Lin Q.; Firestine S. M. Isatins inhibit N5-CAIR synthetase by a substrate depletion mechanism. Biochemistry 2019, 58, 2260–2268. 10.1021/acs.biochem.8b00939. PubMed DOI PMC
Charoensutthivarakul S.; Thomas S. E.; Curran A.; Brown K. P.; Belardinelli J. M.; Whitehouse A. J.; Acebrón-García-de-Eulate M.; Sangan J.; Gramani S. G.; Jackson M.; Mendes V.; Andres Floto R.; Blundell T. L.; Coyne A. G.; Abell C. Development of inhibitors of SAICAR synthetase (PurC) from Mycobacterium abscessus using a fragment-based approach. ACS Infect. Dis. 2022, 8, 296–309. 10.1021/acsinfecdis.1c00432. PubMed DOI PMC
Firestine S. M.; Jo Davisson V. Carboxylases in de novo purine biosynthesis. Characterization of the Gallus gallus bifunctional enzyme. Biochemistry 1994, 33, 11917–11926. 10.1021/bi00205a030. PubMed DOI
Firestine S. M.; Poon S. W.; Mueller E. J.; Stubbe J.; Jo Davisson V. Reactions catalyzed by 5-aminoimidazole ribonucleotide carboxylases from Escherichia coli and Gallus gallus: a case for divergent catalytic mechanisms. Biochemistry 1994, 33, 11927–11934. 10.1021/bi00205a031. PubMed DOI
Mueller E. J.; Meyer E.; Rudolph J.; Jo Davisson V.; Stubbe J. N5-carboxyaminoimidazole ribonucleotide: evidence for a new intermediate and two new enzymatic activities in the de novo purine biosynthetic pathway of Escherichia coli. Biochemistry 1994, 33, 2269–2278. 10.1021/bi00174a038. PubMed DOI
Meyer E.; Kappock T. J.; Osuji C.; Stubbe J. Evidence for the direct transfer of the carboxylate of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to generate 4-carboxy-5-aminoimidazole ribonucleotide catalyzed by Escherichia coli PurE, an N5-CAIR mutase. Biochemistry 1999, 38, 3012–3018. 10.1021/bi9827159. PubMed DOI
Levdikov V. M.; Barynin V. V.; Grebenko A. I.; Melik-Adamyan W. R.; Lamzin V. S.; Wilson K. S. The structure of SAICAR synthase: an enzyme in the de novo pathway of purine nucleotide biosynthesis. Structure 1998, 6, 363–376. 10.1016/S0969-2126(98)00038-0. PubMed DOI
Mathews I. I.; Kappock T. J.; Stubbe J.; Ealick S. E. Crystal structure of Escherichia coli PurE, an unusual mutase in the purine biosynthetic pathway. Structure 1999, 7, 1395–1406. 10.1016/S0969-2126(00)80029-5. PubMed DOI
Antonyuk S. V.; Grebenko A. I.; Levdikov V. M.; Urusova D. V.; Melik-Adamyan V. R.; Lamzin V. S.; Wilson K. S. X-ray diffraction study of the complexes of SAICAR synthase with adenosinetriphosphate. Crystallogr. Rep. 2001, 46, 620–625. 10.1134/1.1387127. DOI
Urusova D. V.; Antonyuk S. V.; Grebenko A. I.; Lamzin V. S.; Melik-Adamyan V. R. X-ray diffraction study of the complex of the enzyme SAICAR synthase with substrate analogues. Crystallogr. Rep. 2003, 48, 763–767. 10.1134/1.1612597. DOI
Schwarzenbacher R.; Jaroszewski L.; von Delft F.; Abdubek P.; Ambing E.; Biorac T.; Brinen L. S.; Canaves J. M.; Cambell J.; Chiu H. J.; Dai X.; Deacon A. M.; Di Donato M.; Elsliger M. A.; Eshagi S.; Floyd R.; Godzik A.; Grittini C.; Grzechnik S. K.; Hampton E.; Karlak C.; Klock H. E.; Koesema E.; Kovarik J. S.; Kreusch A.; Kuhn P.; Lesley S. A.; Levin I.; McMullan D.; McPhillips T. M.; Miller M. D.; Morse A.; Moy K.; Ouyang J.; Page R.; Quijano K.; Robb A.; Spraggon G.; Stevens R. C.; van den Bedem H.; Velasquez J.; Vincent J.; Wang X.; West B.; Wolf G.; Xu Q.; Hodgson K. O.; Wooley J.; Wilson I. A. Crystal structure of a phosphoribosylaminoimidazole mutase PurE (TM0446) from Thermotoga maritima at 1.77-A resolution. Proteins 2004, 55, 474–478. 10.1002/prot.20023. PubMed DOI
Settembre E. C.; Chittuluru J. R.; Mill C. P.; Kappock T. J.; Ealick S. E. Acidophilic adaptations in the structure of Acetobacter aceti N5-carboxyaminoimidazole ribonucleotide mutase (PurE). Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60, 1753–1760. 10.1107/S090744490401858X. PubMed DOI
Boyle M. P.; Kalliomaa A. K.; Levdikov V.; Blagova E.; Fogg M. J.; Brannigan J. A.; Wilson K. S.; Wilkinson A. J. Crystal structure of PurE (BA0288) from Bacillus anthracis at 1.8 A resolution. Proteins 2005, 61, 674–676. 10.1002/prot.20599. PubMed DOI
Constantine C. Z.; Starks C. M.; Mill C. P.; Ransome A. E.; Karpowicz S. J.; Francois J. A.; Goodman R. A.; Kappock T. J. Biochemical and structural studies of N5-carboxyaminoimidazole ribonucleotide mutase from the acidophilic bacterium Acetobacter aceti. Biochemistry 2006, 45, 8193–8208. 10.1021/bi060465n. PubMed DOI
Zhang R.; Skarina T.; Evdokimova E.; Edwards A.; Savchenko A.; Laskowski R.; Cuff M. E.; Joachimiak A. Structure of SAICAR synthase from Thermotoga maritima at 2.2 angstroms reveals an unusual covalent dimer. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 2006, 62, 335–339. 10.1107/S1744309106009651. PubMed DOI PMC
Ginder N. D.; Binkowski D. J.; Fromm H. J.; Honzatko R. B. Nucleotide complexes of Escherichia coli phosphoribosylaminoimidazole succinocarboxamide synthetase. J. Biol. Chem. 2006, 281, 20680–20688. 10.1074/jbc.M602109200. PubMed DOI
Urusova D. V.; Levdikov V. M.; Antonyuk S. V.; Grebenko A. I.; Lamzin V. S.; Melik-Adamyan V. R. X-ray diffraction study of the complex of the enzyme SAICAR synthase with the reaction product. Crystallogr. Rep. 2006, 51, 824–827. 10.1134/S1063774506050129. DOI
Hoskins A. A.; Morar M.; Kappock T. J.; Mathews I. I.; Zaugg J. B.; Barder T. E.; Peng P.; Okamoto A.; Ealick S. E.; Stubbe J. N5-CAIR mutase: role of a CO2 binding site and substrate movement in catalysis. Biochemistry 2007, 46, 2842–2855. 10.1021/bi602436g. PubMed DOI PMC
Li S. X.; Tong Y. P.; Xie X. C.; Wang Q. H.; Zhou H. N.; Han Y.; Zhang Z. Y.; Gao W.; Li S. G.; Zhang X. C.; Bi R. C. Octameric structure of the human bifunctional enzyme PAICS in purine biosynthesis. J. Mol. Biol. 2007, 366, 1603–1614. 10.1016/j.jmb.2006.12.027. PubMed DOI
Brugarolas P.; Duguid E. M.; Zhang W.; Poor C. B.; He C. Structural and biochemical characterization of N5-carboxyaminoimidazole ribonucleotide synthetase and N5-carboxyaminoimidazole ribonucleotide mutase from Staphylococcus aureus. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2011, 67, 707–715. 10.1107/S0907444911023821. PubMed DOI PMC
Tranchimand S.; Starks C. M.; Mathews I. I.; Hockings S. C.; Kappock T. J. Treponema denticola PurE is a bacterial AIR carboxylase. Biochemistry 2011, 50, 4623–4637. 10.1021/bi102033a. PubMed DOI
Oliete R.; Pous J.; Rodriguez-Puente S.; Abad-Zapatero C.; Guasch A. Elastic and inelastic diffraction changes upon variation of the relative humidity environment of PurE crystals. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2013, 69, 194–212. 10.1107/S090744491204454X. PubMed DOI
Taschner M.; Basquin J.; Benda C.; Lorentzen E. Crystal structure of the invertebrate bifunctional purine biosynthesis enzyme PAICS at 2.8 A resolution. Proteins 2013, 81, 1473–1478. 10.1002/prot.24296. PubMed DOI
Manjunath K.; Kanaujia S. P.; Kanagaraj S.; Jeyakanthan J.; Sekar K. Structure of SAICAR synthetase from Pyrococcus horikoshii OT3: insights into thermal stability. Int. J. Biol. Macromol. 2013, 53, 7–19. 10.1016/j.ijbiomac.2012.10.028. PubMed DOI
Wolf N. M.; Abad-Zapatero C.; Johnson M. E.; Fung L. W. Structures of SAICAR synthetase (PurC) from Streptococcus pneumoniae with ADP, Mg2+, AIR and Asp. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2014, 70, 841–850. 10.1107/S139900471303366X. PubMed DOI
Franklin M. C.; Cheung J.; Rudolph M. J.; Burshteyn F.; Cassidy M.; Gary E.; Hillerich B.; Yao Z. K.; Carlier P. R.; Totrov M.; Love J. D. Structural genomics for drug design against the pathogen Coxiella burnetii. Proteins 2015, 83, 2124–2136. 10.1002/prot.24841. PubMed DOI
Škerlová J.; Unterlass J.; Gottmann M.; Marttila P.; Homan E.; Helleday T.; Jemth A. S.; Stenmark P. Crystal structures of human PAICS reveal substrate and product binding of an emerging cancer target. J. Biol. Chem. 2020, 295, 11656–11668. 10.1074/jbc.RA120.013695. PubMed DOI PMC
Firestine S. M.; Wu W.; Youn H.; Jo Davisson V. Interrogating the mechanism of a tight binding inhibitor of AIR carboxylase. Bioorg. Med. Chem. 2009, 17, 794–803. 10.1016/j.bmc.2008.11.057. PubMed DOI PMC
Nelson S. W.; Binkowski D. J.; Honzatko R. B.; Fromm H. J. Mechanism of action of Escherichia coli phosphoribosylaminoimidazolesuccinocarboxamide synthetase. Biochemistry. 2005, 44, 766–774. 10.1021/bi048191w. PubMed DOI
Siegbahn P. E. M.; Himo F. The quantum chemical cluster approach for modeling enzyme reactions. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 323–336. 10.1002/wcms.13. DOI
Blomberg M. R. A.; Borowski T.; Himo F.; Liao R.-Z.; Siegbahn P. E. M. Quantum chemical studies of mechanisms for metalloenzymes. Chem. Rev. 2014, 114, 3601–3658. 10.1021/cr400388t. PubMed DOI
Himo F. Recent trends in quantum chemical modeling of enzymatic reactions. J. Am. Chem. Soc. 2017, 139, 6780–6786. 10.1021/jacs.7b02671. PubMed DOI
Sheng X.; Kazemi M.; Planas F.; Himo F. Modeling enzymatic enantioselectivity using quantum chemical methodology. ACS Catal. 2020, 10, 6430–6449. 10.1021/acscatal.0c00983. DOI
Sheng X.; Himo F. Mechanisms of metal-dependent non-redox decarboxylases from quantum chemical calculations. Comput. Struct. Biotechnol. J. 2021, 19, 3176–3186. 10.1016/j.csbj.2021.05.044. PubMed DOI PMC
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Becke A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 15410410.1063/1.3382344. PubMed DOI
Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16, revision 01,C; Gaussian, Inc.: Wallingford CT, 2016.
Wadt W. R.; Hay P. J. Ab initio effective core potentials for molecular calculations–potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298. 10.1063/1.448800. DOI
Marenich A. V.; Cramer C. J.; Truhlar D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. 10.1021/jp810292n. PubMed DOI
Blomberg M. R. A.; Siegbahn P. E. M. Mechanism for N2O generation in bacterial nitric oxide reductase: a quantum chemical study. Biochemistry 2012, 51, 5173–5186. 10.1021/bi300496e. PubMed DOI
Sheng X.; Lind M. E. S.; Himo F. Theoretical study of the reaction mechanism of phenolic acid decarboxylase. FEBS J. 2015, 282, 4703–4713. 10.1111/febs.13525. PubMed DOI
Sheng X.; Zhu W.; Huddleston J. P.; Xiang D. F.; Raushel F. M.; Richards N. G. J.; Himo F. A combined experimental-theoretical study of the LigW-catalyzed decarboxylation of 5-Carboxyvanillate in the metabolic pathway for lignin degradation. ACS Catal. 2017, 7, 4968–4974. 10.1021/acscatal.7b01166. DOI
Planas F.; Sheng X.; McLeish M. J.; Himo F. A theoretical study of the benzoylformate decarboxylase reaction mechanism. Front. Chem. 2018, 6, 20510.3389/fchem.2018.00205. PubMed DOI PMC
Sheng X.; Himo F. Mechanism of 3-methylglutaconyl CoA decarboxylase AibA/AibB: Pericyclic reaction versus direct decarboxylation. Angew. Chem. 2020, 132, 23173–23177. 10.1002/anie.202008919. PubMed DOI PMC
Litchfield G. J.; Shaw G. Purines, pyrimidines, and imidazoles. Part XXXVIII. A kinetics study of the decarboxylation of 5-amino-1-β-D-ribofuranosylimidazole-4-carboxylic acid 5′-phosphate and related compounds. J. Chem. Soc. B 1971, 0, 1474–1484. 10.1039/J29710001474. DOI
Chen Z. D.; Dixon J. E.; Zalkin H. Cloning of a chicken liver cDNA encoding 5-aminoimidazole ribonucleotide carboxylase and 5-aminoimidazole-4-N-succinocarboxamide ribonucleotide synthetase by functional complementation of Escherichia colipur mutants. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 3097–3101. 10.1073/pnas.87.8.3097. PubMed DOI PMC
Litchfield G. J.; Shaw G. The mechanism of decarboxylation of some 5-aminoimidazole-4-carboxylic acids and the influence of transition metals. Chem. Commun. 1965, 563–565. 10.1039/c19650000563. DOI
Huang X.; Holden H. M.; Raushel F. M. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu. Rev. Biochem. 2001, 70, 149–180. 10.1146/annurev.biochem.70.1.149. PubMed DOI
Wang H.; DeRose E. F.; London R. E.; Shears S. B. P6K structure and the molecular determinants of catalytic specificity in an inositol phosphate kinase family. Nat. Commun. 2014, 5, 417810.1038/ncomms5178. PubMed DOI PMC
Wang H.; Shears S. B. Structural features of human inositol phosphate multikinase rationalize its inositol phosphate kinase and phosphoinositide 3-kinase activities. J. Biol. Chem. 2017, 292, 18192–18202. 10.1074/jbc.M117.801845. PubMed DOI PMC
Binkowski D. J.Kinetic studies of Escherichia coli and human SAICAR synthetase. PhD thesis, Iowa State University, Ames, Iowa, USA, 2007.