The chloroplast genome of Farsetia hamiltonii Royle, phylogenetic analysis, and comparative study with other members of Clade C of Brassicaceae
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
35918648
PubMed Central
PMC9344719
DOI
10.1186/s12870-022-03750-2
PII: 10.1186/s12870-022-03750-2
Knihovny.cz E-zdroje
- Klíčová slova
- Brassicaceae, Farsetia hamiltonii, Farsetiaoccidentalis, Monophyletic, Polymorphic regions, Synonymous substitutions,
- MeSH
- Brassicaceae * genetika MeSH
- chloroplasty genetika MeSH
- fylogeneze MeSH
- genom chloroplastový * genetika MeSH
- kodon MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kodon MeSH
BACKGROUND: Farsetia hamiltonii Royle is a medicinally important annual plant from the Cholistan desert that belongs to the tribe Anastaticeae and clade C of the Brassicaceae family. We provide the entire chloroplast sequence of F.hamiltonii, obtained using the Illumina HiSeq2500 and paired-end sequencing. We compared F. hamiltonii to nine other clade C species, including Farsetia occidentalis, Lobularia libyca, Notoceras bicorne, Parolinia ornata, Morettia canescens, Cochlearia borzaeana, Megacarpaea polyandra, Biscutella laevigata, and Iberis amara. We conducted phylogenetic research on the 22 Brassicaceae species, which included members from 17 tribes and six clades. RESULTS: The chloroplast genome sequence of F.hamiltonii of 154,802 bp sizes with 36.30% GC content and have a typical structure comprised of a Large Single Copy (LSC) of 83,906 bp, a Small Single Copy (SSC) of 17,988 bp, and two copies of Inverted Repeats (IRs) of 26,454 bp. The genomes of F. hamiltonii and F. occidentalis show shared amino acid frequencies and codon use, RNA editing sites, simple sequence repeats, and oligonucleotide repeats. The maximum likelihood tree revealed Farsetia as a monophyletic genus, closely linked to Morettia, with a bootstrap score of 100. The rate of transversion substitutions (Tv) was higher than the rate of transition substitutions (Ts), resulting in Ts/Tv less than one in all comparisons with F. hamiltonii, indicating that the species are closely related. The rate of synonymous substitutions (Ks) was greater than non-synonymous substitutions (Ka) in all comparisons with F. hamiltonii, with a Ka/Ks ratio smaller than one, indicating that genes underwent purifying selection. Low nucleotide diversity values range from 0.00085 to 0.08516, and IR regions comprise comparable genes on junctions with minimal change, supporting the conserved status of the selected chloroplast genomes of the clade C of the Brassicaceae family. We identified ten polymorphic regions, including rps8-rpl14, rps15-ycf1, ndhG-ndhI, psbK-psbI, ccsA-ndhD, rpl36-rps8, petA-psbJ, ndhF-rpl32, psaJ-rpl3, and ycf1 that might be exploited to construct genuine and inexpensive to solve taxonomic discrepancy and understand phylogenetic relationship amongst Brassicaceae species. CONCLUSION: The entire chloroplast sequencing of F. hamiltonii sheds light on the divergence of genic chloroplast sequences among members of the clade C. When other Farsetia species are sequenced in the future, the full F. hamiltonii chloroplast will be used as a source for comprehensive taxonomical investigations of the genus. The comparison of F. hamiltonii and other clade C species adds new information to the phylogenetic data and evolutionary processes of the clade. The results of this study will also provide further molecular uses of clade C chloroplasts for possible plant genetic modifications and will help recognise more Brassicaceae family species.
Department of Agronomy The University of Haripur Khyber Pakhtunkhwa Haripur 22620 Pakistan
Department of Botany The Islamia University Bahawalpur Pakistan
Zobrazit více v PubMed
Al-Shehbaz IA. A generic and tribal synopsis of the Brassicaceae (Cruciferae) Taxon. 2012;61:931–954. doi: 10.1002/tax.615002. DOI
German DA, Friesen NW. Shehbazia (Shehbazieae, Cruciferae), a new monotypic genus and tribe of hybrid origin from Tibet. Turczaninowia. 2014;17:17–23. doi: 10.14258/turczaninowia.17.4.3. DOI
Nikolov LA, Shushkov P, Nevado B, Gan X, Al-Shehbaz IA, Filatov D, et al. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytol. 2019;222:1638–1651. doi: 10.1111/nph.15732. PubMed DOI
Huang CH, Sun R, Hu Y, Zeng L, Zhang N, Cai L, et al. Resolution of brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol Biol Evol. 2016;33:394–412. doi: 10.1093/molbev/msv226. PubMed DOI PMC
Guo X, Liu J, Hao G, Zhang L, Mao K, Wang X, et al. Plastome phylogeny and early diversification of Brassicaceae. BMC Genomics. 2017;18:1–9. doi: 10.1186/s12864-016-3406-7. PubMed DOI PMC
Shankar S, Segaran G, Sundar RDV, Settu S, Sathiavelu M. Brassicaceae - A classical review on its pharmacological activities. Int J Pharm Sci Rev Res. 2019;55:107–113.
Mitchell-Olds T, Willis JH, Goldstein DB. Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet. 2007;8:845–856. doi: 10.1038/nrg2207. PubMed DOI
Hayat MM, Uzair M. Biological potential and GC-MS analysis of phytochemicals of Farsetia hamiltonii (Royle) Biomed Res. 2019;30:609–616. doi: 10.35841/biomedicalresearch.30-19-241. DOI
Ahmad S, Wariss HM, Alam K, Anjum S, Mukhtar M. Ethnobotanical studies of plant resources of Cholistan desert. Pakistan Int J Sci Res. 2014;3:1782–1788.
Arshad M, Akbar G, Rashid S. Wealth of medicinal plants of Cholistan desert, Pakistan: Conventional strategies. Hamdard Medicus (Pakistan). 2002;:25–34.
Atta EM, Hashem AI, Eman RES. A novel flavonoid compound from Farsetia aegyptia and its antimicrobial activity. Chem Nat Compd. 2013;49:432–436. doi: 10.1007/s10600-013-0631-z. DOI
Zhu B, Qian F, Hou Y, Yang W, Cai M, Wu X. Complete chloroplast genome features and phylogenetic analysis of Eruca sativa (Brassicaceae). PLoS One. 2021;16 3 March:1–19. PubMed PMC
Bortiri E, Coleman-Derr D, Lazo GR, Anderson OD, Gu YQ. The complete chloroplast genome sequence of Brachypodium distachyon: Sequence comparison and phylogenetic analysis of eight grass plastomes. BMC Res Notes. 2008;1:61. doi: 10.1186/1756-0500-1-61. PubMed DOI PMC
Nock CJ, Waters DLE, Edwards MA, Bowen SG, Rice N, Cordeiro GM, et al. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J. 2011;9:328–333. doi: 10.1111/j.1467-7652.2010.00558.x. PubMed DOI
Yu X, Tan W, Zhang H, Gao H, Wang W, Tian X. Complete chloroplast genomes of ampelopsis humulifolia and ampelopsis japonica: Molecular structure, comparative analysis, and phylogenetic analysis. Plants. 2019;8:1–15. PubMed PMC
Lee SB, Kaittanis C, Jansen RK, Hostetler JB, Tallon LJ, Town CD, et al. The complete chloroplast genome sequence of Gossypium hirsutum: Organization and phylogenetic relationships to other angiosperms. BMC Genomics. 2006;7:61. doi: 10.1186/1471-2164-7-61. PubMed DOI PMC
Daniell H, Chan HT, Pasoreck EK. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases. Annu Rev Genet. 2016;50:595–618. doi: 10.1146/annurev-genet-120215-035349. PubMed DOI PMC
Zhang CY, Liu TJ, Mo XL, Huang HR, Yao G, Li JR, et al. Comparative analyses of the chloroplast genomes of patchouli plants and their relatives in Pogostemon (Lamiaceae) Plants. 2020;9:1–13. PubMed PMC
Gitzendanner MA, Soltis PS, Wong GKS, Ruhfel BR, Soltis DE. Plastid phylogenomic analysis of green plants: A billion years of evolutionary history. Am J Bot. 2018;105:291–301. doi: 10.1002/ajb2.1048. PubMed DOI
Wu Y, Liu F, Yang DG, Li W, Zhou XJ, Pei XY, et al. Comparative chloroplast genomics of Gossypium species: Insights into repeat sequence variations and phylogeny. Front Plant Sci. 2018;9 March:1–14. PubMed PMC
Ahmed I. Chloroplast Genome Sequencing: Some Reflections. J Next Gener Seq Appl. 2015;02.
Du X, Zeng T, Feng Q, Hu L, Luo X, Weng Q, et al. The complete chloroplast genome sequence of yellow mustard (Sinapis alba L.) and its phylogenetic relationship to other Brassicaceae species. Gene. 2020;731 September 2019:144340. PubMed
Jeong YM, Chung WH, Mun JH, Kim N, Yu HJ. De novo assembly and characterization of the complete chloroplast genome of radish (Raphanus sativus L.). Gene. 2014;551:39–48. doi: 10.1016/j.gene.2014.08.038. PubMed DOI
Mandáková T, Hloušková P, German DA, Lysak MA. Monophyletic origin and evolution of the largest crucifer genomes. Plant Physiol. 2017;174:2062–2071. doi: 10.1104/pp.17.00457. PubMed DOI PMC
Ahmed I, Islam M, Arshad W, Mannan A, Ahmad W, Mirza B. High-quality plant DNA extraction for PCR: an easy approach. 2009;50:105–107. PubMed
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010.
Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–829. doi: 10.1101/gr.074492.107. PubMed DOI PMC
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, et al. GeSeq - Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017;45:W6–11. doi: 10.1093/nar/gkx391. PubMed DOI PMC
Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, et al. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res. 2019;47:W65–73. doi: 10.1093/nar/gkz345. PubMed DOI PMC
Katoh K, Kuma KI, Toh H, Miyata T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–518. doi: 10.1093/nar/gki198. PubMed DOI PMC
Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33:686–689. doi: 10.1093/nar/gki366. PubMed DOI PMC
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–595. doi: 10.1093/bioinformatics/btp698. PubMed DOI PMC
Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, et al. Tablet-next generation sequence assembly visualization. Bioinformatics. 2009;26:401–402. doi: 10.1093/bioinformatics/btp666. PubMed DOI PMC
Lohse M, Drechsel O, Bock R. OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet. 2007;52:267–274. doi: 10.1007/s00294-007-0161-y. PubMed DOI
Tamura K, Stecher G, Peterson D , Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30::2725–9. doi: 10.1093/molbev/mst197. PubMed DOI PMC
Mower JP. The PREP suite: Predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res. 2009;37:253–259. doi: 10.1093/nar/gkp337. PubMed DOI PMC
Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet. 2003;106:411–22. doi: 10.1007/s00122-002-1031-0. PubMed DOI
Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001;29:4633–4642. doi: 10.1093/nar/29.22.4633. PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol Biol Evol. 2017;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019;47. PubMed PMC
Amiryousefi A, Hyvönen J, Poczai P. The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae. PLoS ONE. 2018;13:1–23. doi: 10.1371/journal.pone.0196069. PubMed DOI PMC
Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–3302. doi: 10.1093/molbev/msx248. PubMed DOI
Loeuille B, Thode V, Siniscalchi C, Andrade S, Rossi M, Pirani JR. Extremely low nucleotide diversity among thirty-six new chloroplast genome sequences from Aldama (Heliantheae, Asteraceae) and comparative chloroplast genomics analyses with closely related genera. PeerJ. 2021;9. PubMed PMC
Yang Z, Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol. 2000;17:32–43. doi: 10.1093/oxfordjournals.molbev.a026236. PubMed DOI
Melodelima C, Lobréaux S. Complete Arabis alpina chloroplast genome sequence and insight into its polymorphism. Meta Gene. 2013;1:65–75. doi: 10.1016/j.mgene.2013.10.004. PubMed DOI PMC
Raman G, Park V, Kwak M, Lee B, Park SJ. Characterization of the complete chloroplast genome of Arabis stellari and comparisons with related species. PLoS ONE. 2017;12:1–18. doi: 10.1371/journal.pone.0183197. PubMed DOI PMC
Yu CH, Dang Y, Zhou Z, Wu C, Zhao F, Sachs MS, et al. Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding. Mol Cell. 2015;59:744–754. doi: 10.1016/j.molcel.2015.07.018. PubMed DOI PMC
Mittal P, Brindle J, Stephen J, Plotkin JB, Kudla G. Codon usage influences fitness through RNA toxicity. Proc Natl Acad Sci U S A. 2018;115:8639–8644. doi: 10.1073/pnas.1810022115. PubMed DOI PMC
Shen X, Guo S, Yin Y, Zhang J, Yin X, Liang C, et al. Complete chloroplast genome sequence and phylogenetic analysis of aster tataricus. Molecules. 2018;23. PubMed PMC
Tang D, Wei F, Kashif MH, Munsif F, Zhou R. Identification and analysis of RNA editing sites in chloroplast transcripts of kenaf (Hibiscus cannabinus L.). 3 Biotech. 2019;9:1–8. PubMed PMC
Redwan RM, Saidin A, Kumar SV. Complete chloroplast genome sequence of MD-2 pineapple and its comparative analysis among nine other plants from the subclass Commelinidae. BMC Plant Biol. 2015;15:1–20. doi: 10.1186/s12870-014-0410-4. PubMed DOI PMC
Yan C, Du J, Gao L, Li Y, Hou X. The complete chloroplast genome sequence of watercress (Nasturtium officinale R. Br.): Genome organization, adaptive evolution and phylogenetic relationships in Cardamineae. Gene. 2019;699:24–36. doi: 10.1016/j.gene.2019.02.075. PubMed DOI
Wang Z, Xu B, Li B, Zhou Q, Wang G, Jiang X, et al. Comparative analysis of codon usage patterns in chloroplast genomes of six Euphorbiaceae species. PeerJ. 2020;2020:1–17. PubMed PMC
Rehman U, Sultana N, Abdullah, Jamal A, Muzaffar M, Poczai P. Comparative chloroplast genomics in phyllanthaceae species. Diversity. 2021;13:1–18.
Saina JK, Gichira AW, Li ZZ, Hu GW, Wang QF, Liao K. The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses. Genetica. 2018;146:101–113. doi: 10.1007/s10709-017-0003-x. PubMed DOI
Corneille S, Lutz K, Maliga P. Conservation of RNA editing between rice and maize plastids: Are most editing events dispensable? Mol Gen Genet. 2000;264:419–424. doi: 10.1007/s004380000295. PubMed DOI
Hanson MR, Sutton CA, Lu B. Plant organelle gene expression: Altered by RNA editing. Trends Plant Sci. 1996;1:57–64. doi: 10.1016/S1360-1385(96)80030-6. DOI
He P, Huang S, Xiao G, Zhang Y, Yu J. Abundant RNA editing sites of chloroplast protein-coding genes in Ginkgo biloba and an evolutionary pattern analysis. BMC Plant Biol. 2016;16:1–12. doi: 10.1186/s12870-015-0700-5. PubMed DOI PMC
Abdullah, Mehmood F, Rahim A, Heidari P, Ahmed I, Poczai P. Comparative plastome analysis of Blumea, with implications for genome evolution and phylogeny of Asteroideae. Ecol Evol. 2021; April:1–17. PubMed PMC
Ahmed I, Matthews PJ, Biggs PJ, Naeem M, Mclenachan PA, Lockhart PJ. Identification of chloroplast genome loci suitable for high-resolution phylogeographic studies of Colocasia esculenta (L.) Schott (Araceae) and closely related taxa. Mol Ecol Resour. 2013;13:929–37. doi: 10.1111/1755-0998.12128. PubMed DOI
Ahmed I, Biggs PJ, Matthews PJ, Collins LJ, Hendy MD, Lockhart PJ. Mutational dynamics of aroid chloroplast genomes. Genome Biol Evol. 2012;4:1316–1323. doi: 10.1093/gbe/evs110. PubMed DOI PMC
Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S. Plant DNA barcoding: from gene to genome. Biol Rev Camb Philos Soc. 2015;90:157–166. doi: 10.1111/brv.12104. PubMed DOI
Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA. Polymorphic simple sequence repeat regions in chloroplast genomes: Applications to the population genetics of pines. Proc Natl Acad Sci U S A. 1995;92:7759–7763. doi: 10.1073/pnas.92.17.7759. PubMed DOI PMC
Pugh T, Fouet O, Risterucci AM, Brottier P, Abouladze M, Deletrez C, et al. A new cacao linkage map based on codominant markers: Development and integration of 201 new microsatellite markers. Theor Appl Genet. 2004;108:1151–1161. doi: 10.1007/s00122-003-1533-4. PubMed DOI
Keller J, Rousseau-Gueutin M, Martin GE, Morice J, Boutte J, Coissac E, et al. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus. DNA Res. 2017;24:343–358. doi: 10.1093/dnares/dsx006. PubMed DOI PMC
Hu ZY, Hua W, Huang SM, Wang HZ. Complete chloroplast genome sequence of rapeseed (Brassica napus L.) and its evolutionary implications. Genet Resour Crop Evol. 2011;58:875–87. doi: 10.1007/s10722-010-9626-9. DOI
Kuang DY, Wu H, Wang YL, Gao LM, Zhang SZ, Lu L. Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): Implication for DNA barcoding and population genetics. Genome. 2011;54:663–673. doi: 10.1139/g11-026. PubMed DOI
Iram S, Hayat MQ, Tahir M, Gul A, Abdullah, Ahmed I. Chloroplast genome sequence of artemisia scoparia: Comparative analyses and screening of mutational hotspots. Plants. 2019;8:1–18. PubMed PMC
Abdullah, Waseem S, Mirza B, Ahmed I, Waheed MT. Comparative analyses of chloroplast genomes of Theobroma cacao and Theobroma grandiflorum. Biologia (Bratisl). 2020;75:761–71.
Saina JK, Li ZZ, Gichira AW, Liao YY. The complete chloroplast genome sequence of tree of heaven (Ailanthus altissima (mill.) (sapindales: Simaroubaceae), an important pantropical tree. Int J Mol Sci. 2018;19. PubMed PMC
Shahzadi I, Abdullah, Mehmood F, Ali Z, Ahmed I, Mirza B. Chloroplast genome sequences of Artemisia maritima and Artemisia absinthium: Comparative analyses, mutational hotspots in genus Artemisia and phylogeny in family Asteraceae. Genomics. 2020;112:1454–63. PubMed
Menezes APA, Resende-Moreira LC, Buzatti RSO, Nazareno AG, Carlsen M, Lobo FP, et al. Chloroplast genomes of Byrsonima species (Malpighiaceae): Comparative analysis and screening of high divergence sequences. Sci Rep. 2018;8:1–12. PubMed PMC
Hayat MM, Sarwar S, Anjum S, Uzair M, Rasheed HMF, Jabeen Q, et al. Anti-diabetic and spasmolytic potential of Farsetia hamiltonii Royle from Cholistan desert. J Ethnopharmacol. 2014;156:347–352. doi: 10.1016/j.jep.2014.08.038. PubMed DOI
Zhao B, Liu L, Tan D, Wang J. Analysis of phylogenetic relationships of Brassicaceae species based on Chs sequences. Biochem Syst Ecol. 2010;38:731–739. doi: 10.1016/j.bse.2010.06.003. DOI
Abdullah, Mehmood F, Shahzadi I, Waseem S, Mirza B, Ahmed I, et al. Chloroplast genome of Hibiscus rosa-sinensis (Malvaceae): Comparative analyses and identification of mutational hotspots. Genomics. 2020;112:581–91. PubMed
Song Y, Wang S, Ding Y, Xu J, Li MF, Zhu S, et al. Chloroplast Genomic Resource of Paris for Species Discrimination. Sci Rep. 2017;7:1–8. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC
Kim KJ, Lee HL. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 2004;11:247–261. doi: 10.1093/dnares/11.4.247. PubMed DOI
Li Q jie, Su N, Zhang L, Tong R chang, Zhang X hui, Wang J ru, et al. Chloroplast genomes elucidate diversity, phylogeny, and taxonomy of Pulsatilla (Ranunculaceae). Sci Rep. 2020;10:1–12. PubMed PMC
Mehmood F, Abdullah, Ubaid Z, Shahzadi I, Ahmed I, Waheed MT, et al. Plastid genomics of Nicotiana (Solanaceae): Insights into molecular evolution, positive selection and the origin of the maternal genome of Aztec tobacco (Nicotiana rustica). PeerJ. 2020;8. PubMed PMC
Cao J, Jiang D, Zhao Z, Yuan S, Zhang Y, Zhang T, et al. Development of Chloroplast Genomic Resources in Chinese Yam (Dioscorea polystachya). Biomed Res Int. 2018;2018. PubMed PMC
Liu L, Wang Y, He P, Li P, Lee J, Soltis DE, et al. Chloroplast genome analyses and genomic resource development for epilithic sister genera Oresitrophe and Mukdenia (Saxifragaceae), using genome skimming data. BMC Genomics. 2018;19:1–17. doi: 10.1186/s12864-017-4368-0. PubMed DOI PMC
Henriquez CL, Abdullah, Ahmed I, Carlsen MM, Zuluaga A, Croat TB, et al. Evolutionary dynamics of chloroplast genomes in subfamily Aroideae (Araceae). Genomics. 2020;112:2349–60. PubMed
Sabir J, Schwarz E, Ellison N, Zhang J, Baeshen NA, Mutwakil M, et al. Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes. Plant Biotechnol J. 2014;12:743–754. doi: 10.1111/pbi.12179. PubMed DOI
Schwarz EN, Ruhlman TA, Sabir JSM, Hajrah NH, Alharbi NS, Al-Malki AL, et al. Plastid genome sequences of legumes reveal parallel inversions and multiple losses of rps16 in papilionoids. J Syst Evol. 2015;53:458–468. doi: 10.1111/jse.12179. DOI
Guisinger MM, Kuehl JV, Boore JL, Jansen RK. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: Rearrangements, repeats, and codon usage. Mol Biol Evol. 2011;28:583–600. doi: 10.1093/molbev/msq229. PubMed DOI
Dong WL, Wang RN, Zhang NY, Fan WB, Fang MF, Li ZH. Molecular evolution of chloroplast genomes of orchid species: Insights into phylogenetic relationship and adaptive evolution. Int J Mol Sci. 2018;19. PubMed PMC
Abdullah, Henriquez CL, Mehmood F, Shahzadi I, Ali Z, Waheed MT, et al. Comparison of chloroplast genomes among species of unisexual and bisexual clades of the monocot family araceae. Plants. 2020;9:1–16. PubMed PMC
Kim HT, Kim KJ. Chloroplast genome differences between Asian and American Equisetum arvense (Equisetaceae) and the origin of the hypervariable trnY-trnE intergenic spacer. PLoS One. 2014;9. PubMed PMC
Kim K, Lee SC, Lee J, Lee HO, Joh HJ, Kim NH, et al. Comprehensive survey of genetic diversity in chloroplast genomes and 45S nrDNAs within Panax ginseng species. PLoS ONE. 2015;10:1–14. PubMed PMC
Yang Y, Zhou T, Duan D, Yang J, Feng L, Zhao G. Comparative analysis of the complete chloroplast genomes of five quercus species. Front Plant Sci. 2016;7 June:1–13. PubMed PMC
Mustafina FU, Yi DK, Choi K, Shin CH, Tojibaev KS, Downie SR. A comparative analysis of complete plastid genomes from Prangos fedtschenkoi and Prangos lipskyi (Apiaceae) Ecol Evol. 2019;9:364–377. doi: 10.1002/ece3.4753. PubMed DOI PMC
Qian C, Shi Y, Liu Y, Yan X, Ma XF. Phylogenetics and dispersal patterns of Brassicaceae around the Qinghai-Tibet Plateau. J Syst Evol. 2018;56:202–217. doi: 10.1111/jse.12312. DOI
Arias T, Chris PJ. A fully resolved chloroplast phylogeny of the brassica crops and wild relatives (Brassicaceae: Brassiceae): Novel clades and potential taxonomic implications. Taxon. 2012;61:980–988. doi: 10.1002/tax.615005. DOI
Odintsova MS, Yurina NP. Plastid Genomes of Higher Plants and Algae: Structure and Functions. Mol Biol. 2003;37:649–662. doi: 10.1023/A:1026020623631. PubMed DOI
Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol Biol. 2011;76:273–297. doi: 10.1007/s11103-011-9762-4. PubMed DOI PMC
Cai J, Ma PF, Li HT, Li DZ. Complete plastid genome sequencing of four tilia species (Malvaceae): A comparative analysis and phylogenetic implications. PLoS ONE. 2015;10:1–13. PubMed PMC
Smith DR, Keeling PJ. Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A. 2015;112:10177–10184. doi: 10.1073/pnas.1422049112. PubMed DOI PMC
Bi Y, Zhang MF, Xue J, Dong R, Du YP, Zhang XH. Chloroplast genomic resources for phylogeny and DNA barcoding: A case study on Fritillaria. Sci Rep. 2018;8:1–12. PubMed PMC
Amar MH. ycf1-ndhF genes, the most promising plastid genomic barcode, sheds light on phylogeny at low taxonomic levels in Prunus persica. J Genet Eng Biotechnol. 2020;18. PubMed PMC