The chloroplast genome of Farsetia hamiltonii Royle, phylogenetic analysis, and comparative study with other members of Clade C of Brassicaceae

. 2022 Aug 02 ; 22 (1) : 384. [epub] 20220802

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35918648
Odkazy

PubMed 35918648
PubMed Central PMC9344719
DOI 10.1186/s12870-022-03750-2
PII: 10.1186/s12870-022-03750-2
Knihovny.cz E-zdroje

BACKGROUND: Farsetia hamiltonii Royle is a medicinally important annual plant from the Cholistan desert that belongs to the tribe Anastaticeae and clade C of the Brassicaceae family. We provide the entire chloroplast sequence of F.hamiltonii, obtained using the Illumina HiSeq2500 and paired-end sequencing. We compared F. hamiltonii to nine other clade C species, including Farsetia occidentalis, Lobularia libyca, Notoceras bicorne, Parolinia ornata, Morettia canescens, Cochlearia borzaeana, Megacarpaea polyandra, Biscutella laevigata, and Iberis amara. We conducted phylogenetic research on the 22 Brassicaceae species, which included members from 17 tribes and six clades. RESULTS: The chloroplast genome sequence of F.hamiltonii of 154,802 bp sizes with 36.30% GC content and have a typical structure comprised of a Large Single Copy (LSC) of 83,906 bp, a Small Single Copy (SSC) of 17,988 bp, and two copies of Inverted Repeats (IRs) of 26,454 bp. The genomes of F. hamiltonii and F. occidentalis show shared amino acid frequencies and codon use, RNA editing sites, simple sequence repeats, and oligonucleotide repeats. The maximum likelihood tree revealed Farsetia as a monophyletic genus, closely linked to Morettia, with a bootstrap score of 100. The rate of transversion substitutions (Tv) was higher than the rate of transition substitutions (Ts), resulting in Ts/Tv less than one in all comparisons with F. hamiltonii, indicating that the species are closely related. The rate of synonymous substitutions (Ks) was greater than non-synonymous substitutions (Ka) in all comparisons with F. hamiltonii, with a Ka/Ks ratio smaller than one, indicating that genes underwent purifying selection. Low nucleotide diversity values range from 0.00085 to 0.08516, and IR regions comprise comparable genes on junctions with minimal change, supporting the conserved status of the selected chloroplast genomes of the clade C of the Brassicaceae family. We identified ten polymorphic regions, including rps8-rpl14, rps15-ycf1, ndhG-ndhI, psbK-psbI, ccsA-ndhD, rpl36-rps8, petA-psbJ, ndhF-rpl32, psaJ-rpl3, and ycf1 that might be exploited to construct genuine and inexpensive to solve taxonomic discrepancy and understand phylogenetic relationship amongst Brassicaceae species. CONCLUSION: The entire chloroplast sequencing of F. hamiltonii sheds light on the divergence of genic chloroplast sequences among members of the clade C. When other Farsetia species are sequenced in the future, the full F. hamiltonii chloroplast will be used as a source for comprehensive taxonomical investigations of the genus. The comparison of F. hamiltonii and other clade C species adds new information to the phylogenetic data and evolutionary processes of the clade. The results of this study will also provide further molecular uses of clade C chloroplasts for possible plant genetic modifications and will help recognise more Brassicaceae family species.

Zobrazit více v PubMed

Al-Shehbaz IA. A generic and tribal synopsis of the Brassicaceae (Cruciferae) Taxon. 2012;61:931–954. doi: 10.1002/tax.615002. DOI

German DA, Friesen NW. Shehbazia (Shehbazieae, Cruciferae), a new monotypic genus and tribe of hybrid origin from Tibet. Turczaninowia. 2014;17:17–23. doi: 10.14258/turczaninowia.17.4.3. DOI

Nikolov LA, Shushkov P, Nevado B, Gan X, Al-Shehbaz IA, Filatov D, et al. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytol. 2019;222:1638–1651. doi: 10.1111/nph.15732. PubMed DOI

Huang CH, Sun R, Hu Y, Zeng L, Zhang N, Cai L, et al. Resolution of brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol Biol Evol. 2016;33:394–412. doi: 10.1093/molbev/msv226. PubMed DOI PMC

Guo X, Liu J, Hao G, Zhang L, Mao K, Wang X, et al. Plastome phylogeny and early diversification of Brassicaceae. BMC Genomics. 2017;18:1–9. doi: 10.1186/s12864-016-3406-7. PubMed DOI PMC

Shankar S, Segaran G, Sundar RDV, Settu S, Sathiavelu M. Brassicaceae - A classical review on its pharmacological activities. Int J Pharm Sci Rev Res. 2019;55:107–113.

Mitchell-Olds T, Willis JH, Goldstein DB. Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet. 2007;8:845–856. doi: 10.1038/nrg2207. PubMed DOI

Hayat MM, Uzair M. Biological potential and GC-MS analysis of phytochemicals of Farsetia hamiltonii (Royle) Biomed Res. 2019;30:609–616. doi: 10.35841/biomedicalresearch.30-19-241. DOI

Ahmad S, Wariss HM, Alam K, Anjum S, Mukhtar M. Ethnobotanical studies of plant resources of Cholistan desert. Pakistan Int J Sci Res. 2014;3:1782–1788.

Arshad M, Akbar G, Rashid S. Wealth of medicinal plants of Cholistan desert, Pakistan: Conventional strategies. Hamdard Medicus (Pakistan). 2002;:25–34.

Atta EM, Hashem AI, Eman RES. A novel flavonoid compound from Farsetia aegyptia and its antimicrobial activity. Chem Nat Compd. 2013;49:432–436. doi: 10.1007/s10600-013-0631-z. DOI

Zhu B, Qian F, Hou Y, Yang W, Cai M, Wu X. Complete chloroplast genome features and phylogenetic analysis of Eruca sativa (Brassicaceae). PLoS One. 2021;16 3 March:1–19. PubMed PMC

Bortiri E, Coleman-Derr D, Lazo GR, Anderson OD, Gu YQ. The complete chloroplast genome sequence of Brachypodium distachyon: Sequence comparison and phylogenetic analysis of eight grass plastomes. BMC Res Notes. 2008;1:61. doi: 10.1186/1756-0500-1-61. PubMed DOI PMC

Nock CJ, Waters DLE, Edwards MA, Bowen SG, Rice N, Cordeiro GM, et al. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J. 2011;9:328–333. doi: 10.1111/j.1467-7652.2010.00558.x. PubMed DOI

Yu X, Tan W, Zhang H, Gao H, Wang W, Tian X. Complete chloroplast genomes of ampelopsis humulifolia and ampelopsis japonica: Molecular structure, comparative analysis, and phylogenetic analysis. Plants. 2019;8:1–15. PubMed PMC

Lee SB, Kaittanis C, Jansen RK, Hostetler JB, Tallon LJ, Town CD, et al. The complete chloroplast genome sequence of Gossypium hirsutum: Organization and phylogenetic relationships to other angiosperms. BMC Genomics. 2006;7:61. doi: 10.1186/1471-2164-7-61. PubMed DOI PMC

Daniell H, Chan HT, Pasoreck EK. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases. Annu Rev Genet. 2016;50:595–618. doi: 10.1146/annurev-genet-120215-035349. PubMed DOI PMC

Zhang CY, Liu TJ, Mo XL, Huang HR, Yao G, Li JR, et al. Comparative analyses of the chloroplast genomes of patchouli plants and their relatives in Pogostemon (Lamiaceae) Plants. 2020;9:1–13. PubMed PMC

Gitzendanner MA, Soltis PS, Wong GKS, Ruhfel BR, Soltis DE. Plastid phylogenomic analysis of green plants: A billion years of evolutionary history. Am J Bot. 2018;105:291–301. doi: 10.1002/ajb2.1048. PubMed DOI

Wu Y, Liu F, Yang DG, Li W, Zhou XJ, Pei XY, et al. Comparative chloroplast genomics of Gossypium species: Insights into repeat sequence variations and phylogeny. Front Plant Sci. 2018;9 March:1–14. PubMed PMC

Ahmed I. Chloroplast Genome Sequencing: Some Reflections. J Next Gener Seq Appl. 2015;02.

Du X, Zeng T, Feng Q, Hu L, Luo X, Weng Q, et al. The complete chloroplast genome sequence of yellow mustard (Sinapis alba L.) and its phylogenetic relationship to other Brassicaceae species. Gene. 2020;731 September 2019:144340. PubMed

Jeong YM, Chung WH, Mun JH, Kim N, Yu HJ. De novo assembly and characterization of the complete chloroplast genome of radish  (Raphanus sativus L.). Gene. 2014;551:39–48. doi: 10.1016/j.gene.2014.08.038. PubMed DOI

Mandáková T, Hloušková P, German DA, Lysak MA. Monophyletic origin and evolution of the largest crucifer genomes. Plant Physiol. 2017;174:2062–2071. doi: 10.1104/pp.17.00457. PubMed DOI PMC

Ahmed I, Islam M, Arshad W, Mannan A, Ahmad W, Mirza B. High-quality plant DNA extraction for PCR: an easy approach. 2009;50:105–107. PubMed

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010.

Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–829. doi: 10.1101/gr.074492.107. PubMed DOI PMC

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, et al. GeSeq - Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017;45:W6–11. doi: 10.1093/nar/gkx391. PubMed DOI PMC

Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L, et al. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res. 2019;47:W65–73. doi: 10.1093/nar/gkz345. PubMed DOI PMC

Katoh K, Kuma KI, Toh H, Miyata T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–518. doi: 10.1093/nar/gki198. PubMed DOI PMC

Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33:686–689. doi: 10.1093/nar/gki366. PubMed DOI PMC

Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–595. doi: 10.1093/bioinformatics/btp698. PubMed DOI PMC

Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, et al. Tablet-next generation sequence assembly visualization. Bioinformatics. 2009;26:401–402. doi: 10.1093/bioinformatics/btp666. PubMed DOI PMC

Lohse M, Drechsel O, Bock R. OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet. 2007;52:267–274. doi: 10.1007/s00294-007-0161-y. PubMed DOI

Tamura K, Stecher G, Peterson D , Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30::2725–9. doi: 10.1093/molbev/mst197. PubMed DOI PMC

Mower JP. The PREP suite: Predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res. 2009;37:253–259. doi: 10.1093/nar/gkp337. PubMed DOI PMC

Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley  (Hordeum vulgare L.). Theor Appl Genet. 2003;106:411–22. doi: 10.1007/s00122-002-1031-0. PubMed DOI

Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001;29:4633–4642. doi: 10.1093/nar/29.22.4633. PubMed DOI PMC

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol Biol Evol. 2017;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC

Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019;47. PubMed PMC

Amiryousefi A, Hyvönen J, Poczai P. The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae. PLoS ONE. 2018;13:1–23. doi: 10.1371/journal.pone.0196069. PubMed DOI PMC

Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–3302. doi: 10.1093/molbev/msx248. PubMed DOI

Loeuille B, Thode V, Siniscalchi C, Andrade S, Rossi M, Pirani JR. Extremely low nucleotide diversity among thirty-six new chloroplast genome sequences from Aldama (Heliantheae, Asteraceae) and comparative chloroplast genomics analyses with closely related genera. PeerJ. 2021;9. PubMed PMC

Yang Z, Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol. 2000;17:32–43. doi: 10.1093/oxfordjournals.molbev.a026236. PubMed DOI

Melodelima C, Lobréaux S. Complete Arabis alpina chloroplast genome sequence and insight into its polymorphism. Meta Gene. 2013;1:65–75. doi: 10.1016/j.mgene.2013.10.004. PubMed DOI PMC

Raman G, Park V, Kwak M, Lee B, Park SJ. Characterization of the complete chloroplast genome of Arabis stellari and comparisons with related species. PLoS ONE. 2017;12:1–18. doi: 10.1371/journal.pone.0183197. PubMed DOI PMC

Yu CH, Dang Y, Zhou Z, Wu C, Zhao F, Sachs MS, et al. Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding. Mol Cell. 2015;59:744–754. doi: 10.1016/j.molcel.2015.07.018. PubMed DOI PMC

Mittal P, Brindle J, Stephen J, Plotkin JB, Kudla G. Codon usage influences fitness through RNA toxicity. Proc Natl Acad Sci U S A. 2018;115:8639–8644. doi: 10.1073/pnas.1810022115. PubMed DOI PMC

Shen X, Guo S, Yin Y, Zhang J, Yin X, Liang C, et al. Complete chloroplast genome sequence and phylogenetic analysis of aster tataricus. Molecules. 2018;23. PubMed PMC

Tang D, Wei F, Kashif MH, Munsif F, Zhou R. Identification and analysis of RNA editing sites in chloroplast transcripts of kenaf (Hibiscus cannabinus L.). 3 Biotech. 2019;9:1–8. PubMed PMC

Redwan RM, Saidin A, Kumar SV. Complete chloroplast genome sequence of MD-2 pineapple and its comparative analysis among nine other plants from the subclass Commelinidae. BMC Plant Biol. 2015;15:1–20. doi: 10.1186/s12870-014-0410-4. PubMed DOI PMC

Yan C, Du J, Gao L, Li Y, Hou X. The complete chloroplast genome sequence of watercress (Nasturtium officinale R. Br.): Genome organization, adaptive evolution and phylogenetic relationships in Cardamineae. Gene. 2019;699:24–36. doi: 10.1016/j.gene.2019.02.075. PubMed DOI

Wang Z, Xu B, Li B, Zhou Q, Wang G, Jiang X, et al. Comparative analysis of codon usage patterns in chloroplast genomes of six Euphorbiaceae species. PeerJ. 2020;2020:1–17. PubMed PMC

Rehman U, Sultana N, Abdullah, Jamal A, Muzaffar M, Poczai P. Comparative chloroplast genomics in phyllanthaceae species. Diversity. 2021;13:1–18.

Saina JK, Gichira AW, Li ZZ, Hu GW, Wang QF, Liao K. The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses. Genetica. 2018;146:101–113. doi: 10.1007/s10709-017-0003-x. PubMed DOI

Corneille S, Lutz K, Maliga P. Conservation of RNA editing between rice and maize plastids: Are most editing events dispensable? Mol Gen Genet. 2000;264:419–424. doi: 10.1007/s004380000295. PubMed DOI

Hanson MR, Sutton CA, Lu B. Plant organelle gene expression: Altered by RNA editing. Trends Plant Sci. 1996;1:57–64. doi: 10.1016/S1360-1385(96)80030-6. DOI

He P, Huang S, Xiao G, Zhang Y, Yu J. Abundant RNA editing sites of chloroplast protein-coding genes in Ginkgo biloba and an evolutionary pattern analysis. BMC Plant Biol. 2016;16:1–12. doi: 10.1186/s12870-015-0700-5. PubMed DOI PMC

Abdullah, Mehmood F, Rahim A, Heidari P, Ahmed I, Poczai P. Comparative plastome analysis of Blumea, with implications for genome evolution and phylogeny of Asteroideae. Ecol Evol. 2021; April:1–17. PubMed PMC

Ahmed I, Matthews PJ, Biggs PJ, Naeem M, Mclenachan PA, Lockhart PJ. Identification of chloroplast genome loci suitable for high-resolution phylogeographic studies of Colocasia esculenta  (L.) Schott (Araceae) and closely related taxa. Mol Ecol Resour. 2013;13:929–37. doi: 10.1111/1755-0998.12128. PubMed DOI

Ahmed I, Biggs PJ, Matthews PJ, Collins LJ, Hendy MD, Lockhart PJ. Mutational dynamics of aroid chloroplast genomes. Genome Biol Evol. 2012;4:1316–1323. doi: 10.1093/gbe/evs110. PubMed DOI PMC

Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S. Plant DNA barcoding: from gene to genome. Biol Rev Camb Philos Soc. 2015;90:157–166. doi: 10.1111/brv.12104. PubMed DOI

Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA. Polymorphic simple sequence repeat regions in chloroplast genomes: Applications to the population genetics of pines. Proc Natl Acad Sci U S A. 1995;92:7759–7763. doi: 10.1073/pnas.92.17.7759. PubMed DOI PMC

Pugh T, Fouet O, Risterucci AM, Brottier P, Abouladze M, Deletrez C, et al. A new cacao linkage map based on codominant markers: Development and integration of 201 new microsatellite markers. Theor Appl Genet. 2004;108:1151–1161. doi: 10.1007/s00122-003-1533-4. PubMed DOI

Keller J, Rousseau-Gueutin M, Martin GE, Morice J, Boutte J, Coissac E, et al. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus. DNA Res. 2017;24:343–358. doi: 10.1093/dnares/dsx006. PubMed DOI PMC

Hu ZY, Hua W, Huang SM, Wang HZ. Complete chloroplast genome sequence of rapeseed  (Brassica napus L.) and its evolutionary implications. Genet Resour Crop Evol. 2011;58:875–87. doi: 10.1007/s10722-010-9626-9. DOI

Kuang DY, Wu H, Wang YL, Gao LM, Zhang SZ, Lu L. Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): Implication for DNA barcoding and population genetics. Genome. 2011;54:663–673. doi: 10.1139/g11-026. PubMed DOI

Iram S, Hayat MQ, Tahir M, Gul A, Abdullah, Ahmed I. Chloroplast genome sequence of artemisia scoparia: Comparative analyses and screening of mutational hotspots. Plants. 2019;8:1–18. PubMed PMC

Abdullah, Waseem S, Mirza B, Ahmed I, Waheed MT. Comparative analyses of chloroplast genomes of Theobroma cacao and Theobroma grandiflorum. Biologia (Bratisl). 2020;75:761–71.

Saina JK, Li ZZ, Gichira AW, Liao YY. The complete chloroplast genome sequence of tree of heaven (Ailanthus altissima (mill.) (sapindales: Simaroubaceae), an important pantropical tree. Int J Mol Sci. 2018;19. PubMed PMC

Shahzadi I, Abdullah, Mehmood F, Ali Z, Ahmed I, Mirza B. Chloroplast genome sequences of Artemisia maritima and Artemisia absinthium: Comparative analyses, mutational hotspots in genus Artemisia and phylogeny in family Asteraceae. Genomics. 2020;112:1454–63. PubMed

Menezes APA, Resende-Moreira LC, Buzatti RSO, Nazareno AG, Carlsen M, Lobo FP, et al. Chloroplast genomes of Byrsonima species (Malpighiaceae): Comparative analysis and screening of high divergence sequences. Sci Rep. 2018;8:1–12. PubMed PMC

Hayat MM, Sarwar S, Anjum S, Uzair M, Rasheed HMF, Jabeen Q, et al. Anti-diabetic and spasmolytic potential of Farsetia hamiltonii Royle from Cholistan desert. J Ethnopharmacol. 2014;156:347–352. doi: 10.1016/j.jep.2014.08.038. PubMed DOI

Zhao B, Liu L, Tan D, Wang J. Analysis of phylogenetic relationships of Brassicaceae species based on Chs sequences. Biochem Syst Ecol. 2010;38:731–739. doi: 10.1016/j.bse.2010.06.003. DOI

Abdullah, Mehmood F, Shahzadi I, Waseem S, Mirza B, Ahmed I, et al. Chloroplast genome of Hibiscus rosa-sinensis (Malvaceae): Comparative analyses and identification of mutational hotspots. Genomics. 2020;112:581–91. PubMed

Song Y, Wang S, Ding Y, Xu J, Li MF, Zhu S, et al. Chloroplast Genomic Resource of Paris for Species Discrimination. Sci Rep. 2017;7:1–8. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC

Kim KJ, Lee HL. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 2004;11:247–261. doi: 10.1093/dnares/11.4.247. PubMed DOI

Li Q jie, Su N, Zhang L, Tong R chang, Zhang X hui, Wang J ru, et al. Chloroplast genomes elucidate diversity, phylogeny, and taxonomy of Pulsatilla (Ranunculaceae). Sci Rep. 2020;10:1–12. PubMed PMC

Mehmood F, Abdullah, Ubaid Z, Shahzadi I, Ahmed I, Waheed MT, et al. Plastid genomics of Nicotiana (Solanaceae): Insights into molecular evolution, positive selection and the origin of the maternal genome of Aztec tobacco (Nicotiana rustica). PeerJ. 2020;8. PubMed PMC

Cao J, Jiang D, Zhao Z, Yuan S, Zhang Y, Zhang T, et al. Development of Chloroplast Genomic Resources in Chinese Yam (Dioscorea polystachya). Biomed Res Int. 2018;2018. PubMed PMC

Liu L, Wang Y, He P, Li P, Lee J, Soltis DE, et al. Chloroplast genome analyses and genomic resource development for epilithic sister genera Oresitrophe and Mukdenia (Saxifragaceae), using genome skimming data. BMC Genomics. 2018;19:1–17. doi: 10.1186/s12864-017-4368-0. PubMed DOI PMC

Henriquez CL, Abdullah, Ahmed I, Carlsen MM, Zuluaga A, Croat TB, et al. Evolutionary dynamics of chloroplast genomes in subfamily Aroideae (Araceae). Genomics. 2020;112:2349–60. PubMed

Sabir J, Schwarz E, Ellison N, Zhang J, Baeshen NA, Mutwakil M, et al. Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes. Plant Biotechnol J. 2014;12:743–754. doi: 10.1111/pbi.12179. PubMed DOI

Schwarz EN, Ruhlman TA, Sabir JSM, Hajrah NH, Alharbi NS, Al-Malki AL, et al. Plastid genome sequences of legumes reveal parallel inversions and multiple losses of rps16 in papilionoids. J Syst Evol. 2015;53:458–468. doi: 10.1111/jse.12179. DOI

Guisinger MM, Kuehl JV, Boore JL, Jansen RK. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: Rearrangements, repeats, and codon usage. Mol Biol Evol. 2011;28:583–600. doi: 10.1093/molbev/msq229. PubMed DOI

Dong WL, Wang RN, Zhang NY, Fan WB, Fang MF, Li ZH. Molecular evolution of chloroplast genomes of orchid species: Insights into phylogenetic relationship and adaptive evolution. Int J Mol Sci. 2018;19. PubMed PMC

Abdullah, Henriquez CL, Mehmood F, Shahzadi I, Ali Z, Waheed MT, et al. Comparison of chloroplast genomes among species of unisexual and bisexual clades of the monocot family araceae. Plants. 2020;9:1–16. PubMed PMC

Kim HT, Kim KJ. Chloroplast genome differences between Asian and American Equisetum arvense (Equisetaceae) and the origin of the hypervariable trnY-trnE intergenic spacer. PLoS One. 2014;9. PubMed PMC

Kim K, Lee SC, Lee J, Lee HO, Joh HJ, Kim NH, et al. Comprehensive survey of genetic diversity in chloroplast genomes and 45S nrDNAs within Panax ginseng species. PLoS ONE. 2015;10:1–14. PubMed PMC

Yang Y, Zhou T, Duan D, Yang J, Feng L, Zhao G. Comparative analysis of the complete chloroplast genomes of five quercus species. Front Plant Sci. 2016;7 June:1–13. PubMed PMC

Mustafina FU, Yi DK, Choi K, Shin CH, Tojibaev KS, Downie SR. A comparative analysis of complete plastid genomes from Prangos fedtschenkoi and Prangos lipskyi (Apiaceae) Ecol Evol. 2019;9:364–377. doi: 10.1002/ece3.4753. PubMed DOI PMC

Qian C, Shi Y, Liu Y, Yan X, Ma XF. Phylogenetics and dispersal patterns of Brassicaceae around the Qinghai-Tibet Plateau. J Syst Evol. 2018;56:202–217. doi: 10.1111/jse.12312. DOI

Arias T, Chris PJ. A fully resolved chloroplast phylogeny of the brassica crops and wild relatives (Brassicaceae: Brassiceae): Novel clades and potential taxonomic implications. Taxon. 2012;61:980–988. doi: 10.1002/tax.615005. DOI

Odintsova MS, Yurina NP. Plastid Genomes of Higher Plants and Algae: Structure and Functions. Mol Biol. 2003;37:649–662. doi: 10.1023/A:1026020623631. PubMed DOI

Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol Biol. 2011;76:273–297. doi: 10.1007/s11103-011-9762-4. PubMed DOI PMC

Cai J, Ma PF, Li HT, Li DZ. Complete plastid genome sequencing of four tilia species (Malvaceae): A comparative analysis and phylogenetic implications. PLoS ONE. 2015;10:1–13. PubMed PMC

Smith DR, Keeling PJ. Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A. 2015;112:10177–10184. doi: 10.1073/pnas.1422049112. PubMed DOI PMC

Bi Y, Zhang MF, Xue J, Dong R, Du YP, Zhang XH. Chloroplast genomic resources for phylogeny and DNA barcoding: A case study on Fritillaria. Sci Rep. 2018;8:1–12. PubMed PMC

Amar MH. ycf1-ndhF genes, the most promising plastid genomic barcode, sheds light on phylogeny at low taxonomic levels in Prunus persica. J Genet Eng Biotechnol. 2020;18. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...