Similarity of TOPSIS results based on criterion variability: Case study on public economic

. 2022 ; 17 (8) : e0271951. [epub] 20220804

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35925960

In the real world, acceptance of a decision is conditional on the availability of a great volume of data. Selection of a suitable solution on the basis of this data represents a problem that multi-criterial methods (MCDM) are applied to. The issue of which of these should be favoured during their use involves a specification of the importance of the assessed criteria. The goal of the presented research is to quantify the differences (symmetry) in assessment using selected MCDM methods (Technique for Order of Preference by Similarity to Ideal Solution-TOPSIS), while applying an absolute and relative variability of the assessed criteria to a determination of their importance. The obtained results indicate that the order of the assessed subject (alternative) is not directly influenced by the method of determining the variability of the assessed criteria. We can also state that the degree of concurrence in the order of application of the TOPSIS technique, in combination with both approaches expressed by the Jaccard index, is relatively low.

Zobrazit více v PubMed

Hsieh JY, Fu K. Testing Municipal Reinvention on the Price of Municipal Governance. Lex localis–Journal of Local Self-Government. 2014; 12(2): 289–310. doi: 10.4335/12.2.289-310(2014) DOI

Pevcin P. Productivity Changes in Slovenian Urban Municipalities. Lex localis–Journal of Local Self-Government. 2014; 12(3): 417–429. doi: 10.4335/12.3.417-429(2014) DOI

Wu CM, Hsieh CL, Chang KL. A Hybrid Multiple Criteria Decision Making Model for Supplier Selection. Mathematical Problems in Engineering. 2013; 8: 324283. doi: 10.1155/2013/324283 DOI

Jahanshahloo GR, Hosseinzadeh Lotfi F, Izadikhah M. Extension of the TOPSIS method for decision-making problem with fuzzy data. Applied Mathematics and Computation. 2016; 181(2): 1544–1551. doi: 10.1016/j.amc.2006.02.057 DOI

Stanujkic D, Dordevic B, Dordevic M. Comparative Analysis of Some Prominent MCDM Methods: A Case of Ranking Serbian Banks. Serbian Journal of Management. 2013; 8(2): 213–241. doi: 10.5937/sjm8-3774 DOI

Čereška A, Zavadskas EK, Bucinskas V, Podvezko V, Sutinys E. Analysis of Steel Wire Rope Diagnostic Data Applying Multi-Criteria Methods. Applied Sciences. 2018; 8(2): 260. doi: 10.3390/app8020260 DOI

Cinelli M, Kadzinski M, Gonzalez M, Słowinski R. How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy. Omega. 2020; 96: 102261. doi: 10.1016/j.omega.2020.102261 PubMed DOI PMC

Brans JP, Vincke P. Note—A Preference Ranking Organisation Method: The Promethee Method for Multiple Criteria Decision Making. Management science. 1985; 31(6): 647–656. doi: 10.1287/mnsc.31.6.647 DOI

Roy B. Classement et Choix en Présence de Points de Vue Multiples. Revue fran. d’informat. et de recher. operation. 1968; 2(8): 57–75.

Hwang CL, Yoon K. Methods for multiple attribute decision making, Berlin: Springer; 1981.

Duckstein L, Opricovic S. Multiobjective optimization in river basin development. Water resources research. 1980; 16(1): 14–20. doi: 10.1029/WR016i001p00014 DOI

Greco S. A new PCCA method: Idra. European Journal of Oper. Res. 1997; 98(3): 587–601. doi: 10.1016/S0377-2217(96)00022-7 DOI

Voogd H. Multicriteria evaluation with mixed qualitative and quantitative data. Environment and Plannning. 1982; 9(2): 221–236. doi: 10.1068/b090221 DOI

Guitouni A, Martel JM. Tentative guidelines to help choosing an appropriate MCDA method. European Journal of Operational Research. 1998; 109: 501–521. doi: 10.1016/S0377-2217(98)00073-3 DOI

Turskis Z. Multi-attribute contractors ranking method by applying ordering of feasible alternatives of solutions in terms of preferability technique. Technological and Economic Development of Economy. 2008; 14(2): 224–239, doi: 10.3846/1392-8619.2008.14.224-239 DOI

Ustinovichius L, Zavadskas EK, Podvezko V. Application of a quantitative multiple criteria decision making (MCDM-1) approach to the analysis of investments in construction. Control and Cybernetics. 2007; 36(1): 251–268.

Brauers WKM, Zavadskas EK, Peldschus F, Turskis Z. Multi-objective decision-making for road design. Transport. 2008; 23(3): 183–193. doi: 10.3846/1648-4142.2008.23.183-193 DOI

Jafaryeganeh H, Ventura M, Guedes Soares C. Effect of normalization techniques in multi-criteria decision making methods for the design of ship internal layout from a Pareto optimal set. Structural and Multidisciplinary Optimization volume. 2020; 62: 1849–1863. doi: 10.1007/s00158-020-02581-9 DOI

Pavic Z, Novoselac V. Notes on TOPSIS Method. International Journal of Research in Engineering and Science. 2013; 1(2): 5–12.

Kandakoglu A, Celik M, Akgun I. A multi-methodological approach for shipping registry selection in maritime transportation industry. Mathematical and Computer Modelling. 2009; 49: 586–597. doi: 10.1016/j.mcm.2008.09.001 DOI

Shih H, Shyur H, Lee ES. An extension of TOPSIS for group decision making. Mathematical and Computer Modelling. 2007; 45: 801–813. doi: 10.1016/j.mcm.2006.03.023 DOI

Diaz-Balteiro C, González-Pachón J, Romero C. Measuring systems sustainability with multi-criteria methods: A critical review. European Journal of Operational Research. 2017; 258: 607–616. doi: 10.1016/j.ejor.2016.08.075 DOI

Bhutia PW, Phipon R. Application of AHP and TOPSIS Method for Supplier Selection Problem. Journal of Engineering. 2012; 2(10): 43–50.

Zyoud SH, Fuchs-Hanusch D. A bibliometric-based survey on AHP and TOPSIS techniques. Expert Systems with Applications. 2017; 78: 158–181. doi: 10.1016/j.eswa.2017.02.016 DOI

Noryani M, Sapuan SM, Mastura MT. Multi-criteria decision-making tools for material selection of natural fibre composites: A review. Journal of Mechanical Engineering and Sciences. 2018; 12(1): 3330–3353. doi: 10.15282/jmes.12.1.2018.5.0299 DOI

Zavadskas EK, Mardani A, Turskis Z, Jusoh A, Nor KM. Development of TOPSIS Method to Solve Complicated Decision-Making Problems—An Overview on Developments from 2000 to 2015. International Journal of Information Technology and Decision Making. 2016; 15(3): 645–682. doi: 10.1142/S0219622016300019 DOI

Tramarico CL, Mizuno D, Antonio V, Salomon P, Augusto F, Marins S. Analytic Hierarchy Process and Supply Chain Management: A Bibliometric Study. Procedia Computer Science. 2015; 55: 441–450. doi: 10.1016/j.procs.2015.07.005 DOI

Rozentale L, Blumberga D. Methods to Evaluate Electricity Policy from Climate Perspective. Environmental and Climate Technologies. 2019; 23(2): 131–147. doi: 10.2478/rtuect-2019-0060 DOI

Suharevska K, Blumberga D. Progress in Renewable Energy Technologies: Innovation Potential in Latvia. Environmental and Climate Technologies. 2019; 23(2): 47–63. doi: 10.2478/rtuect-2019-0054 DOI

Vavrek R, Chovancová J. Assessment of economic and environmental energy performance of EU countries using CV-TOPSIS technique. Ecological Indicators. 2019; 106: 105519. doi: 10.1016/j.ecolind.2019.105519 DOI

Djordjević B, Krmac E. Evaluation of energy-environment efficiency of European transport sectors: Non-radial DEA and TOPSIS approach. Energies. 2019; 12(15): 2907. doi: 10.3390/en12152907 DOI

Vavrek R, Bečica J. Capital City as a Factor of Multi-Criteria Decision Analysis—Application on Transport Companies in the Czech Republic. Mathematics. 2020; 8(10): 1765. doi: 10.3390/math8101765 DOI

Chu TC. Selecting Plant Location via a Fuzzy TOPSIS Approach. The International Journal of Advanced Manufacturing Technology. 2020, 20, 859–864. doi: 10.1007/s001700200227 DOI

Chang CH, Lin JJ, Lin JH, Chiang MC. Domestic open-end equity mutual fund performance evaluation using extended TOPSIS method with different distance approaches. Expert Systems with Applications. 2010; 37(6): 4642–4649. doi: 10.1016/j.eswa.2009.12.044 DOI

Behzadian M, Khanmohammadi Otaghsara S, Yazdani M, Ignatius J. A state-of the-art survey of TOPSIS applications. Expert Systems with Applications. 2012; 39(17): 13051–13069. doi: 10.1016/j.eswa.2012.05.056 DOI

Vavrek R. An Analysis of Usage of a Multi-Criteria Approach in an Athlete Evaluation: An Evidence of NHL Attackers. Mathematics. 2021; 9(12): 1399. doi: 10.3390/math9121399 DOI

Seyedmohammadi J, Sarmadian F, Jafarzadeh AA, Ghorbani MA, Shahbazi F. Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma. 2018; 310: 178–190. doi: 10.1016/j.geoderma.2017.09.012 DOI

Vavrek R. Evaluation of the Impact of Selected Weighting Methods on the Results of the TOPSIS Technique. International Journal of Information Technology & Decision Making. 2019; 18(6): 1821–1843. doi: 10.1142/S021962201950041X DOI

Dutta B, Dao SD, Martínez L, Goh M. An evolutionary strategic weight manipulation approach for multi-attribute decision making: TOPSIS method. International Journal of Approximate Reasoning. 2021; 129: 64–83. doi: 10.1016/j.ijar.2020.11.004 DOI

Liu J, Yin Y. An integrated method for sustainable energy storing node optimization selection in China. Energy Conversion and Management. 2019; 199(1): 112049. doi: 10.1016/j.enconman.2019.112049 DOI

Keršuliene V, Zavadskas EK, Turskis Z. Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (Swara). Journal of Business Economics and Management. 2010; 11(2): 243–258. doi: 10.3846/jbem.2010.12 DOI

Kendall MG. Rank Correlation Methods, London: Griffin: London; 1980.

Fisher RA, Yates F. Statistical Tables for Biological, Agricultural and Medical Research, London: Oliver and Boyd; 1963.

Zavadskas EK. Multiple Criteria Evaluation of Technological Decisions of Construction, Moscow: Civil Engineering Institute; 1987.

Wang D, Shi Y, Wan K. Integrated evaluation of the carrying capacities of mineral resource-based cities considering synergy between subsystems. Ecological Indicators. 2020; 108: 105701. doi: 10.1016/j.ecolind.2019.105701 DOI

Paradowski B, Shekhovtsov A, Bączkiewicz A, Kizielewicz B, Sałabun W. Similarity Analysis of Methods for Objective Determination of Weights in Multi-Criteria Decision Support Systems. Symmetry. 2021; 13: 1874. doi: 10.3390/sym13101874 DOI

Ouerghi H, Mourali O, Zagrouba E. Non-subsampled shearlet transform based MRI and PET brain image fusion using simplified pulse coupled neural network and weight local features in YIQ colour space. IET Image Processing. 2018; 12(10): 1873. doi: 10.1049/iet-ipr.2017.1298 DOI

Yuan J, Luo X. Regional energy security performance evaluation in China using MTGS and SPA-TOPSIS. Science of the Total Environment. 2019; 696: 133817. doi: 10.1016/j.scitotenv.2019.133817 PubMed DOI

Zhang L, Zhang L, Xu Y, Zhou P, Yeh CH. Evaluating urban land use efficiency with interacting criteria: An empirical study of cities in Jiangsu China. Land Use Policy. 2020; 90: 104292. doi: 10.1016/j.landusepol.2019.104292 DOI

Singla A, Sing Ahuja I, Sing Sethi A. Comparative Analysis of Technology Push Strategies Influencing Sustainable Development in Manufacturing Industries Using Topsis and Vikor Technique. International Journal for Quality Research. 2017; 12(1): 129–146. doi: 10.18421/IJQR12.01-08 DOI

Yalcin E, Unlu U. A Multi-Criteria Performance Analysis of Initial Public Offering (IPO) Firms Using Critic and Vikor Methods. Technological and Economic Development of Economy. 2018. 1 24(2): 534–560. doi: 10.3846/20294913.2016.1213201 DOI

Sangnawakij P, Niwitpong S. Confidence intervals for coefficients of variation in two-parameter exponential distributions. Communications in Statistics: Simulation and Computation. 2017; 46(8): 6618–6630. doi: 10.1080/03610918.2016.1208236 DOI

Muhammad ANB, Yeong WC, Chong ZL, LIM SL, Khoo MBC. Monitoring the coefficient of variation using a variable sample size EWMA chart. Computers and Industrial Engineering. 2018; 126: 378–397. doi: 10.1016/j.cie.2018.09.045 DOI

Tran KP, Heuchenne C, Balakrishnan N. On the performance of coefficient of variation charts in the presence of measurement errors. Quality and Reliability Engineering International. 2019; 35(1): 329–350. doi: 10.1002/qre.2402 DOI

Bhowate A, Aware M, Sharma S. Predictive Torque Control with Online Weighting Factor Computation Technique to Improve Performance of Induction Motor Drive in Low Speed Region. IEEE Access. 2019; 7: 42309–42321. doi: 10.1109/ACCESS.2019.2908289 DOI

Vrabková I. Perspektivy řízení kvality ve veřejné správě. Ostrava: TU Ostrava; 2012.

Papcunová V, Balážová E, Agh, P. The Evaluation of the Relations Between the State Budget and the Local Self-Government Budgets (Case Study of the Slovak Republic), Proceedings of the 22ND International Colloquium on Regional Sciences, Velé Bílovice, Czechia, 12–14.6.2019, Klímová, V., Žítek, V, Masaryk University: Brno, 2019, 369–377.

Hendrych D. Správní věda: teorie veřejné správy. Prague: ASPI; 2007. doi: 10.1364/ol.32.002339 DOI

Plaček M, Němec J, Ochrana F, Puček M, Krápek M, Špaček D. Do performance management schemes deliver results in the public sector? Observations from the Czech Republic. Public Money & Management. 2020; Early Access. doi: 10.1080/09540962.2020.1732053 DOI

Peková J, Pilný J, Jetmar M. Veřejná správa a finance veřejného sektoru. Prague: ASPI: Prague; 2008.

Romanova A, Radvan M, Schweigl J. Constitutional Aspects of Local Taxes in the Slovak Republic and in the Czech Republic. Lex Localis—Journal of Local Self-Government. 2019; 17(3): 591–616. doi: 10.4335/17.3.591-616(2019) DOI

Janoušková J, Sobotovičová Š. Property tax in the regions of the Czech Republic. Economics and Management (E+M) 2017, 20(4), 120–134. doi: 10.15240/tul/001/2017-4-009 DOI

Sedmihradská L., Bakoš E. Municipal Tax Autonomy and Tax Mimicking in Czech Municipalities. Lex localis–Journal of Local Self-Government. 2016; 14(1): 75–92. doi: 10.4335/14.1.75-92(2016) DOI

Plaček M, Špaček D, Ochrana F, Krapek M, Dvořáková P. Does excellence matter? National quality awards and performance of Czech municipalities. Journal of East European Management Studies. 2019; 24(4): 589–613. doi: 10.5771/0949-6181-2019-4-589 DOI

Hwang CM, Yang MS. New Similarity Measures Between Generalized Trapezoidal Fuzzy Numbers Using the Jaccard Index. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 2014; 22(6): 831–844. doi: 10.1142/S0218488514500445 DOI

Albatineh AN, Khan HMR, Zogheib B, Kibria GBM. Effects of some design factors on the distribution of similarity indices in cluster analysis. Communications in Statistics—Simulation and Computation. 2017; 46(5): 4018–4034. doi: 10.1080/03610918.2015.1082586 DOI

Vavrek R, Bečica J, Papcunová V, Gundová P, Mitríková J. Number of Financial Indicators as a Factor of Multi-Criteria Analysis via the TOPSIS Technique: A Municipal Case Study. Algorithms. 2021; 14: 64. doi: 10.3390/a14020064 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...