Similarity of TOPSIS results based on criterion variability: Case study on public economic
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35925960
PubMed Central
PMC9352064
DOI
10.1371/journal.pone.0271951
PII: PONE-D-21-35126
Knihovny.cz E-zdroje
- MeSH
- výzkumný projekt * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In the real world, acceptance of a decision is conditional on the availability of a great volume of data. Selection of a suitable solution on the basis of this data represents a problem that multi-criterial methods (MCDM) are applied to. The issue of which of these should be favoured during their use involves a specification of the importance of the assessed criteria. The goal of the presented research is to quantify the differences (symmetry) in assessment using selected MCDM methods (Technique for Order of Preference by Similarity to Ideal Solution-TOPSIS), while applying an absolute and relative variability of the assessed criteria to a determination of their importance. The obtained results indicate that the order of the assessed subject (alternative) is not directly influenced by the method of determining the variability of the assessed criteria. We can also state that the degree of concurrence in the order of application of the TOPSIS technique, in combination with both approaches expressed by the Jaccard index, is relatively low.
Zobrazit více v PubMed
Hsieh JY, Fu K. Testing Municipal Reinvention on the Price of Municipal Governance. Lex localis–Journal of Local Self-Government. 2014; 12(2): 289–310. doi: 10.4335/12.2.289-310(2014) DOI
Pevcin P. Productivity Changes in Slovenian Urban Municipalities. Lex localis–Journal of Local Self-Government. 2014; 12(3): 417–429. doi: 10.4335/12.3.417-429(2014) DOI
Wu CM, Hsieh CL, Chang KL. A Hybrid Multiple Criteria Decision Making Model for Supplier Selection. Mathematical Problems in Engineering. 2013; 8: 324283. doi: 10.1155/2013/324283 DOI
Jahanshahloo GR, Hosseinzadeh Lotfi F, Izadikhah M. Extension of the TOPSIS method for decision-making problem with fuzzy data. Applied Mathematics and Computation. 2016; 181(2): 1544–1551. doi: 10.1016/j.amc.2006.02.057 DOI
Stanujkic D, Dordevic B, Dordevic M. Comparative Analysis of Some Prominent MCDM Methods: A Case of Ranking Serbian Banks. Serbian Journal of Management. 2013; 8(2): 213–241. doi: 10.5937/sjm8-3774 DOI
Čereška A, Zavadskas EK, Bucinskas V, Podvezko V, Sutinys E. Analysis of Steel Wire Rope Diagnostic Data Applying Multi-Criteria Methods. Applied Sciences. 2018; 8(2): 260. doi: 10.3390/app8020260 DOI
Cinelli M, Kadzinski M, Gonzalez M, Słowinski R. How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy. Omega. 2020; 96: 102261. doi: 10.1016/j.omega.2020.102261 PubMed DOI PMC
Brans JP, Vincke P. Note—A Preference Ranking Organisation Method: The Promethee Method for Multiple Criteria Decision Making. Management science. 1985; 31(6): 647–656. doi: 10.1287/mnsc.31.6.647 DOI
Roy B. Classement et Choix en Présence de Points de Vue Multiples. Revue fran. d’informat. et de recher. operation. 1968; 2(8): 57–75.
Hwang CL, Yoon K. Methods for multiple attribute decision making, Berlin: Springer; 1981.
Duckstein L, Opricovic S. Multiobjective optimization in river basin development. Water resources research. 1980; 16(1): 14–20. doi: 10.1029/WR016i001p00014 DOI
Greco S. A new PCCA method: Idra. European Journal of Oper. Res. 1997; 98(3): 587–601. doi: 10.1016/S0377-2217(96)00022-7 DOI
Voogd H. Multicriteria evaluation with mixed qualitative and quantitative data. Environment and Plannning. 1982; 9(2): 221–236. doi: 10.1068/b090221 DOI
Guitouni A, Martel JM. Tentative guidelines to help choosing an appropriate MCDA method. European Journal of Operational Research. 1998; 109: 501–521. doi: 10.1016/S0377-2217(98)00073-3 DOI
Turskis Z. Multi-attribute contractors ranking method by applying ordering of feasible alternatives of solutions in terms of preferability technique. Technological and Economic Development of Economy. 2008; 14(2): 224–239, doi: 10.3846/1392-8619.2008.14.224-239 DOI
Ustinovichius L, Zavadskas EK, Podvezko V. Application of a quantitative multiple criteria decision making (MCDM-1) approach to the analysis of investments in construction. Control and Cybernetics. 2007; 36(1): 251–268.
Brauers WKM, Zavadskas EK, Peldschus F, Turskis Z. Multi-objective decision-making for road design. Transport. 2008; 23(3): 183–193. doi: 10.3846/1648-4142.2008.23.183-193 DOI
Jafaryeganeh H, Ventura M, Guedes Soares C. Effect of normalization techniques in multi-criteria decision making methods for the design of ship internal layout from a Pareto optimal set. Structural and Multidisciplinary Optimization volume. 2020; 62: 1849–1863. doi: 10.1007/s00158-020-02581-9 DOI
Pavic Z, Novoselac V. Notes on TOPSIS Method. International Journal of Research in Engineering and Science. 2013; 1(2): 5–12.
Kandakoglu A, Celik M, Akgun I. A multi-methodological approach for shipping registry selection in maritime transportation industry. Mathematical and Computer Modelling. 2009; 49: 586–597. doi: 10.1016/j.mcm.2008.09.001 DOI
Shih H, Shyur H, Lee ES. An extension of TOPSIS for group decision making. Mathematical and Computer Modelling. 2007; 45: 801–813. doi: 10.1016/j.mcm.2006.03.023 DOI
Diaz-Balteiro C, González-Pachón J, Romero C. Measuring systems sustainability with multi-criteria methods: A critical review. European Journal of Operational Research. 2017; 258: 607–616. doi: 10.1016/j.ejor.2016.08.075 DOI
Bhutia PW, Phipon R. Application of AHP and TOPSIS Method for Supplier Selection Problem. Journal of Engineering. 2012; 2(10): 43–50.
Zyoud SH, Fuchs-Hanusch D. A bibliometric-based survey on AHP and TOPSIS techniques. Expert Systems with Applications. 2017; 78: 158–181. doi: 10.1016/j.eswa.2017.02.016 DOI
Noryani M, Sapuan SM, Mastura MT. Multi-criteria decision-making tools for material selection of natural fibre composites: A review. Journal of Mechanical Engineering and Sciences. 2018; 12(1): 3330–3353. doi: 10.15282/jmes.12.1.2018.5.0299 DOI
Zavadskas EK, Mardani A, Turskis Z, Jusoh A, Nor KM. Development of TOPSIS Method to Solve Complicated Decision-Making Problems—An Overview on Developments from 2000 to 2015. International Journal of Information Technology and Decision Making. 2016; 15(3): 645–682. doi: 10.1142/S0219622016300019 DOI
Tramarico CL, Mizuno D, Antonio V, Salomon P, Augusto F, Marins S. Analytic Hierarchy Process and Supply Chain Management: A Bibliometric Study. Procedia Computer Science. 2015; 55: 441–450. doi: 10.1016/j.procs.2015.07.005 DOI
Rozentale L, Blumberga D. Methods to Evaluate Electricity Policy from Climate Perspective. Environmental and Climate Technologies. 2019; 23(2): 131–147. doi: 10.2478/rtuect-2019-0060 DOI
Suharevska K, Blumberga D. Progress in Renewable Energy Technologies: Innovation Potential in Latvia. Environmental and Climate Technologies. 2019; 23(2): 47–63. doi: 10.2478/rtuect-2019-0054 DOI
Vavrek R, Chovancová J. Assessment of economic and environmental energy performance of EU countries using CV-TOPSIS technique. Ecological Indicators. 2019; 106: 105519. doi: 10.1016/j.ecolind.2019.105519 DOI
Djordjević B, Krmac E. Evaluation of energy-environment efficiency of European transport sectors: Non-radial DEA and TOPSIS approach. Energies. 2019; 12(15): 2907. doi: 10.3390/en12152907 DOI
Vavrek R, Bečica J. Capital City as a Factor of Multi-Criteria Decision Analysis—Application on Transport Companies in the Czech Republic. Mathematics. 2020; 8(10): 1765. doi: 10.3390/math8101765 DOI
Chu TC. Selecting Plant Location via a Fuzzy TOPSIS Approach. The International Journal of Advanced Manufacturing Technology. 2020, 20, 859–864. doi: 10.1007/s001700200227 DOI
Chang CH, Lin JJ, Lin JH, Chiang MC. Domestic open-end equity mutual fund performance evaluation using extended TOPSIS method with different distance approaches. Expert Systems with Applications. 2010; 37(6): 4642–4649. doi: 10.1016/j.eswa.2009.12.044 DOI
Behzadian M, Khanmohammadi Otaghsara S, Yazdani M, Ignatius J. A state-of the-art survey of TOPSIS applications. Expert Systems with Applications. 2012; 39(17): 13051–13069. doi: 10.1016/j.eswa.2012.05.056 DOI
Vavrek R. An Analysis of Usage of a Multi-Criteria Approach in an Athlete Evaluation: An Evidence of NHL Attackers. Mathematics. 2021; 9(12): 1399. doi: 10.3390/math9121399 DOI
Seyedmohammadi J, Sarmadian F, Jafarzadeh AA, Ghorbani MA, Shahbazi F. Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma. 2018; 310: 178–190. doi: 10.1016/j.geoderma.2017.09.012 DOI
Vavrek R. Evaluation of the Impact of Selected Weighting Methods on the Results of the TOPSIS Technique. International Journal of Information Technology & Decision Making. 2019; 18(6): 1821–1843. doi: 10.1142/S021962201950041X DOI
Dutta B, Dao SD, Martínez L, Goh M. An evolutionary strategic weight manipulation approach for multi-attribute decision making: TOPSIS method. International Journal of Approximate Reasoning. 2021; 129: 64–83. doi: 10.1016/j.ijar.2020.11.004 DOI
Liu J, Yin Y. An integrated method for sustainable energy storing node optimization selection in China. Energy Conversion and Management. 2019; 199(1): 112049. doi: 10.1016/j.enconman.2019.112049 DOI
Keršuliene V, Zavadskas EK, Turskis Z. Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (Swara). Journal of Business Economics and Management. 2010; 11(2): 243–258. doi: 10.3846/jbem.2010.12 DOI
Kendall MG. Rank Correlation Methods, London: Griffin: London; 1980.
Fisher RA, Yates F. Statistical Tables for Biological, Agricultural and Medical Research, London: Oliver and Boyd; 1963.
Zavadskas EK. Multiple Criteria Evaluation of Technological Decisions of Construction, Moscow: Civil Engineering Institute; 1987.
Wang D, Shi Y, Wan K. Integrated evaluation of the carrying capacities of mineral resource-based cities considering synergy between subsystems. Ecological Indicators. 2020; 108: 105701. doi: 10.1016/j.ecolind.2019.105701 DOI
Paradowski B, Shekhovtsov A, Bączkiewicz A, Kizielewicz B, Sałabun W. Similarity Analysis of Methods for Objective Determination of Weights in Multi-Criteria Decision Support Systems. Symmetry. 2021; 13: 1874. doi: 10.3390/sym13101874 DOI
Ouerghi H, Mourali O, Zagrouba E. Non-subsampled shearlet transform based MRI and PET brain image fusion using simplified pulse coupled neural network and weight local features in YIQ colour space. IET Image Processing. 2018; 12(10): 1873. doi: 10.1049/iet-ipr.2017.1298 DOI
Yuan J, Luo X. Regional energy security performance evaluation in China using MTGS and SPA-TOPSIS. Science of the Total Environment. 2019; 696: 133817. doi: 10.1016/j.scitotenv.2019.133817 PubMed DOI
Zhang L, Zhang L, Xu Y, Zhou P, Yeh CH. Evaluating urban land use efficiency with interacting criteria: An empirical study of cities in Jiangsu China. Land Use Policy. 2020; 90: 104292. doi: 10.1016/j.landusepol.2019.104292 DOI
Singla A, Sing Ahuja I, Sing Sethi A. Comparative Analysis of Technology Push Strategies Influencing Sustainable Development in Manufacturing Industries Using Topsis and Vikor Technique. International Journal for Quality Research. 2017; 12(1): 129–146. doi: 10.18421/IJQR12.01-08 DOI
Yalcin E, Unlu U. A Multi-Criteria Performance Analysis of Initial Public Offering (IPO) Firms Using Critic and Vikor Methods. Technological and Economic Development of Economy. 2018. 1 24(2): 534–560. doi: 10.3846/20294913.2016.1213201 DOI
Sangnawakij P, Niwitpong S. Confidence intervals for coefficients of variation in two-parameter exponential distributions. Communications in Statistics: Simulation and Computation. 2017; 46(8): 6618–6630. doi: 10.1080/03610918.2016.1208236 DOI
Muhammad ANB, Yeong WC, Chong ZL, LIM SL, Khoo MBC. Monitoring the coefficient of variation using a variable sample size EWMA chart. Computers and Industrial Engineering. 2018; 126: 378–397. doi: 10.1016/j.cie.2018.09.045 DOI
Tran KP, Heuchenne C, Balakrishnan N. On the performance of coefficient of variation charts in the presence of measurement errors. Quality and Reliability Engineering International. 2019; 35(1): 329–350. doi: 10.1002/qre.2402 DOI
Bhowate A, Aware M, Sharma S. Predictive Torque Control with Online Weighting Factor Computation Technique to Improve Performance of Induction Motor Drive in Low Speed Region. IEEE Access. 2019; 7: 42309–42321. doi: 10.1109/ACCESS.2019.2908289 DOI
Vrabková I. Perspektivy řízení kvality ve veřejné správě. Ostrava: TU Ostrava; 2012.
Papcunová V, Balážová E, Agh, P. The Evaluation of the Relations Between the State Budget and the Local Self-Government Budgets (Case Study of the Slovak Republic), Proceedings of the 22ND International Colloquium on Regional Sciences, Velé Bílovice, Czechia, 12–14.6.2019, Klímová, V., Žítek, V, Masaryk University: Brno, 2019, 369–377.
Hendrych D. Správní věda: teorie veřejné správy. Prague: ASPI; 2007. doi: 10.1364/ol.32.002339 DOI
Plaček M, Němec J, Ochrana F, Puček M, Krápek M, Špaček D. Do performance management schemes deliver results in the public sector? Observations from the Czech Republic. Public Money & Management. 2020; Early Access. doi: 10.1080/09540962.2020.1732053 DOI
Peková J, Pilný J, Jetmar M. Veřejná správa a finance veřejného sektoru. Prague: ASPI: Prague; 2008.
Romanova A, Radvan M, Schweigl J. Constitutional Aspects of Local Taxes in the Slovak Republic and in the Czech Republic. Lex Localis—Journal of Local Self-Government. 2019; 17(3): 591–616. doi: 10.4335/17.3.591-616(2019) DOI
Janoušková J, Sobotovičová Š. Property tax in the regions of the Czech Republic. Economics and Management (E+M) 2017, 20(4), 120–134. doi: 10.15240/tul/001/2017-4-009 DOI
Sedmihradská L., Bakoš E. Municipal Tax Autonomy and Tax Mimicking in Czech Municipalities. Lex localis–Journal of Local Self-Government. 2016; 14(1): 75–92. doi: 10.4335/14.1.75-92(2016) DOI
Plaček M, Špaček D, Ochrana F, Krapek M, Dvořáková P. Does excellence matter? National quality awards and performance of Czech municipalities. Journal of East European Management Studies. 2019; 24(4): 589–613. doi: 10.5771/0949-6181-2019-4-589 DOI
Hwang CM, Yang MS. New Similarity Measures Between Generalized Trapezoidal Fuzzy Numbers Using the Jaccard Index. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 2014; 22(6): 831–844. doi: 10.1142/S0218488514500445 DOI
Albatineh AN, Khan HMR, Zogheib B, Kibria GBM. Effects of some design factors on the distribution of similarity indices in cluster analysis. Communications in Statistics—Simulation and Computation. 2017; 46(5): 4018–4034. doi: 10.1080/03610918.2015.1082586 DOI
Vavrek R, Bečica J, Papcunová V, Gundová P, Mitríková J. Number of Financial Indicators as a Factor of Multi-Criteria Analysis via the TOPSIS Technique: A Municipal Case Study. Algorithms. 2021; 14: 64. doi: 10.3390/a14020064 DOI