Conversion of anterograde into retrograde trains is an intrinsic property of intraflagellar transport

. 2022 Sep 26 ; 32 (18) : 4071-4078.e4. [epub] 20220803

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35926510
Odkazy

PubMed 35926510
PubMed Central PMC9521741
DOI 10.1016/j.cub.2022.07.033
PII: S0960-9822(22)01160-5
Knihovny.cz E-zdroje

Cilia or eukaryotic flagella are microtubule-based organelles found across the eukaryotic tree of life. Their very high aspect ratio and crowded interior are unfavorable to diffusive transport of most components required for their assembly and maintenance. Instead, a system of intraflagellar transport (IFT) trains moves cargo rapidly up and down the cilium (Figure 1A).1-3 Anterograde IFT, from the cell body to the ciliary tip, is driven by kinesin-II motors, whereas retrograde IFT is powered by cytoplasmic dynein-1b motors.4 Both motors are associated with long chains of IFT protein complexes, known as IFT trains, and their cargoes.5-8 The conversion from anterograde to retrograde motility at the ciliary tip involves (1) the dissociation of kinesin motors from trains,9 (2) a fundamental restructuring of the train from the anterograde to the retrograde architecture,8,10,11 (3) the unloading and reloading of cargo,2 and (4) the activation of the dynein motors.8,12 A prominent hypothesis is that there is dedicated calcium-dependent protein-based machinery at the ciliary tip to mediate these processes.4,13 However, the mechanisms of IFT turnaround have remained elusive. In this study, we use mechanical and chemical methods to block IFT at intermediate positions along the cilia of the green algae Chlamydomonas reinhardtii, in normal and calcium-depleted conditions. We show that IFT turnaround, kinesin dissociation, and dynein-1b activation can consistently be induced at arbitrary distances from the ciliary tip, with no stationary tip machinery being required. Instead, we demonstrate that the anterograde-to-retrograde conversion is a calcium-independent intrinsic ability of IFT.

Komentář v

PubMed

Zobrazit více v PubMed

Kozminski K.G., Johnson K.A., Forscher P., Rosenbaum J.L. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl. Acad. Sci. USA. 1993;90:5519–5523. doi: 10.1073/pnas.90.12.5519. PubMed DOI PMC

Lechtreck K.F. IFT–Cargo Interactions and Protein Transport in Cilia. Trends Biochem. Sci. 2015;40:765–778. doi: 10.1016/j.tibs.2015.09.003. PubMed DOI PMC

Picariello T., Brown J.M., Hou Y., Swank G., Cochran D.A., King O.D., Lechtreck K., Pazour G.J., Witman G.B. A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia. J. Cell Sci. 2019;132:jcs220749. doi: 10.1242/jcs.220749. PubMed DOI PMC

Rosenbaum J.L., Witman G.B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 2002;3:813–825. doi: 10.1038/nrm952. PubMed DOI

Cole D.G., Diener D.R., Himelblau A.L., Beech P.L., Fuster J.C., Rosenbaum J.L. Chlamydomonas Kinesin-II-dependent Intraflagellar Transport (IFT): IFT Particles Contain Proteins Required for Ciliary Assembly in Caenorhabditis elegans Sensory Neurons. J. Cell Biol. 1998;141:993–1008. doi: 10.1083/jcb.141.4.993. PubMed DOI PMC

Pigino G., Geimer S., Lanzavecchia S., Paccagnini E., Cantele F., Diener D.R., Rosenbaum J.L., Lupetti P. Electron-tomographic analysis of intraflagellar transport particle trains in situ. J. Cell Biol. 2009;187:135–148. doi: 10.1083/jcb.200905103. PubMed DOI PMC

Taschner M., Lorentzen E. The Intraflagellar Transport Machinery. Cold Spring Harb. Perspect. Biol. 2016;8:a028092. doi: 10.1101/cshperspect.a028092.14. PubMed DOI PMC

Jordan M.A., Diener D.R., Stepanek L., Pigino G. The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nat. Cell Biol. 2018;20:1250–1255. http://www.nature.com/articles/s41556-018-0213-1 PubMed

Chien A., Shih S.M., Bower R., Tritschler D., Porter M.E., Yildiz A. Dynamics of the IFT machinery at the ciliary tip. Elife. 2017;6 e28606–25. PubMed PMC

Stepanek L., Pigino G. Microtubule doublets are double-track railways for intraflagellar transport trains. Science. 2016;352:721–724. https://www.sciencemag.org/lookup/doi/10.1126/science.aaf4594 PubMed DOI

Wingfield J.L., Mekonnen B., Mengoni I., Liu P., Jordan M., Diener D., Pigino G., Lechtreck K. In vivo imaging shows continued association of several IFT-A, IFT-B and dynein complexes while IFT trains U-turn at the tip. J. Cell Sci. 2021;134:jcs259010. doi: 10.1242/jcs.259010. PubMed DOI PMC

Webb S., Mukhopadhyay A.G., Roberts A.J. Intraflagellar transport trains and motors: Insights from structure. Semin. Cell Dev. Biol. 2020;107:82–90. doi: 10.1016/j.semcdb.2020.05.021. PubMed DOI PMC

Collingridge P., Brownlee C., Wheeler G.L. Compartmentalized calcium signaling in cilia regulates intraflagellar transport. Curr. Biol. 2013;23:2311–2318. doi: 10.1016/j.cub.2013.09.059. PubMed DOI

Dentler W. Intraflagellar transport (IFT) during assembly and disassembly of Chlamydomonas flagella. J. Cell Biol. 2005;170:649–659. doi: 10.1083/jcb.200412021. PubMed DOI PMC

Shih S.M., Engel B.D., Kocabas F., Bilyard T., Gennerich A., Marshall W.F., Yildiz A. Intraflagellar transport drives flagellar surface motility. Elife. 2013;2:e00744. doi: 10.7554/elife.00744. PubMed DOI PMC

Engel B.D., Lechtreck K.F., Sakai T., Ikebe M., Witman G.B., Marshall W.F. First edit edition. Vol. 93. Elsevier; 2009. Total Internal Reflection Fluorescence (TIRF) Microscopy of Chlamydomonas Flagella; pp. 157–177. (Methods in cell biology). PubMed DOI PMC

Absalon S., Blisnick T., Kohl L., Toutirais G., Doré G., Julkowska D., Tavenet A., Bastin P. Intraflagellar Transport and Functional Analysis of Genes Required for Flagellum Formation in Trypanosomes. Mol. Biol. Cell. 2008;19:929–944. doi: 10.1091/mbc.e07-08-0749. PubMed DOI PMC

Besschetnova T.Y., Roy B., Shah J.V. Methods in Cell Biology. Elsevier; 2009. Imaging Intraflagellar Transport in Mammalian Primary Cilia; pp. 331–346. PubMed DOI PMC

Dentler W.L. Structures linking the tips of ciliary and flagellar microtubules to the membrane. J. Cell Sci. 1980;42:207–220. doi: 10.1242/jcs.42.1.207. PubMed DOI

Miller J.M., Wang W., Balczon R., Dentler W.L. Ciliary microtubule capping structures contain a mammalian kinetochore antigen. J. Cell Biol. 1990;110:703–714. doi: 10.1083/jcb.110.3.703. PubMed DOI PMC

Fisch C., Dupuis-Williams P. Ultrastructure of cilia and flagella – back to the future. Biol. Cell. 2011;103:249–270. https://onlinelibrary.wiley.com/doi/abs/10.1042/BC20100139 PubMed DOI

Satish Tammana T.V., Tammana D., Diener D.R., Rosenbaum J. Centrosomal protein CEP104 (Chlamydomonas FAP256) moves to the ciliary tip during cilia assembly. J. Cell Sci. 2013;126:5018–5029. doi: 10.1242/jcs.133439. PubMed DOI PMC

Chaya T., Omori Y., Kuwahara R., Furukawa T. ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport. EMBO J. 2014;33:1227–1242. doi: 10.1002/embj.201488175. PubMed DOI PMC

Chaya T., Furukawa T. Post-translational modification enzymes as key regulators of ciliary protein trafficking. J. Biochem. 2021;169:633–642. doi: 10.1093/jb/mvab024. PubMed DOI PMC

Liang Y., Pang Y., Wu Q., Hu Z., Han X., Xu Y., Deng H., Pan J. FLA8/KIF3B phosphorylation regulates kinesin-II interaction with IFT-B to control IFT entry and turnaround. Dev. Cell. 2014;30:585–597. PubMed

Wilson N.F., Lefebvre P.A. Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii. Eukaryot. Cell. 2004;3:1307–1319. PubMed PMC

Buchholz T.O., Krull A., Shahidi R., Pigino G., Jékely G., Jug F. Content-aware image restoration for electron microscopy. Methods Cell Biol. 2019;152:277–289. PubMed

Mijalkovic J., van Krugten J., Oswald F., Acar S., Peterman E.J.G. Single-Molecule Turnarounds of Intraflagellar Transport at the C. elegans Ciliary Tip. Cell Rep. 2018;25:1701–1707.e2. doi: 10.1016/j.celrep.2018.10.050. PubMed DOI

Hirokawa N., Noda Y. Intracellular Transport and Kinesin Superfamily Proteins, KIFs: Structure, Function, and Dynamics. Physiol. Rev. 2008;88:1089–1118. doi: 10.1152/physrev.00023.2007. PubMed DOI

Broekhuis J.R., Verhey K.J., Jansen G. Regulation of Cilium Length and Intraflagellar Transport by the RCK-Kinases ICK and MOK in Renal Epithelial Cells. PLoS One. 2014;9:e108470. doi: 10.1371/journal.pone.0108470. PubMed DOI PMC

Zhao Q., Li S., Shao S., Wang Z., Pan J. FLS2 is a CDK-like kinase that directly binds IFT70 and is required for proper ciliary disassembly in Chlamydomonas. PLoS Genet. 2020;16:e1008561. doi: 10.1371/journal.pgen.1008561. PubMed DOI PMC

Wren K.N., Craft J.M., Tritschler D., Schauer A., Patel D.K., Smith E.F., Porter M.E., Kner P., Lechtreck K.F. A Differential Cargo-Loading Model of Ciliary Length Regulation by IFT. Curr. Biol. 2013;23:2463–2471. doi: 10.1016/j.cub.2013.10.044. PubMed DOI PMC

Craft J.M., Harris J.A., Hyman S., Kner P., Lechtreck K.F. Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. J. Cell Biol. 2015;208:223–237. doi: 10.1083/jcb.201409036. PubMed DOI PMC

Hunter E.L., Lechtreck K., Fu G., Hwang J., Lin H., Gokhale A., Alford L.M., Lewis B., Yamamoto R., Kamiya R., et al. The IDA3 adapter, required for intraflagellar transport of I1 dynein, is regulated by ciliary length. Mol. Biol. Cell. 2018;29:886–896. doi: 10.1091/mbc.e17-12-0729. PubMed DOI PMC

Prevo B., Mangeol P., Oswald F., Scholey J.M., Peterman E.J.G. Functional differentiation of cooperating kinesin-2 motors orchestrates cargo import and transport in C. elegans cilia. Nat. Cell Biol. 2015;17:1536–1545. doi: 10.1038/ncb3263. PubMed DOI

Sizova I., Fuhrmann M., Hegemann P. A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene. 2001;277:221–229. doi: 10.1016/S0378-1119(01)00616-3. PubMed DOI

Kindle K.L. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 1990;87:1228–1232. https://www.pnas.org/content/87/3/1228 PubMed PMC

Mastronarde D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005;152:36–51. https://www.sciencedirect.com/science/article/pii/S1047847705001528 PubMed

Zheng S.Q., Palovcak E., Armache J.P., Verba K.A., Cheng Y., Agard D.A. MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017;14:331–332. http://msg.ucsf.edu/em/software/index.html PubMed PMC

Mastronarde D.N., Held S.R. Automated tilt series alignment and tomographic reconstruction in IMOD. 16. J. Struct. Biol. 2017;197:102–113. PubMed PMC

Chen Y., Wang Z., Zhang J., Li L., Wan X., Sun F., Zhang F. Accelerating electron tomographyreconstruction algorithm ICON with GPU. Biophys. Rep. 2017;3:36–42. https://link.springer.com/article/10.1007/s41048-017-0041-z PubMed DOI PMC

Buchholz T.O., Jordan M., Pigino G., Jug F. Vol. 2019. IEEE Computer Society; 2019. Cryo-CARE: Content-aware image restoration for cryo-transmission electron microscopy data; pp. 502–506. (Proceedings - International Symposium on Biomedical Imaging).

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. PubMed PMC

Itseez Open Source Computer Vision Library. 2015. https://github.com/itseez/opencv

Weigert M., Schmidt U., Boothe T., Müller A., Dibrov A., Jain A., Wilhelm B., Schmidt D., Broaddus C., Culley S., et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods. 2018;15:1090–1097. doi: 10.1038/s41592-018-0216-7. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...