Quantitative mapping of mercury and selenium in mushroom fruit bodies with laser ablation-inductively coupled plasma-mass spectrometry

. 2022 Oct ; 414 (25) : 7517-7530. [epub] 20220805

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35927365

Grantová podpora
RVO61389005 Akademie Věd České Republiky
RVO67985831 Akademie Věd České Republiky
GOA01G00409 Universiteit Gent
PDO2020003501 Universiteit Gent
J 4400-N Austrian Science Fund

Odkazy

PubMed 35927365
PubMed Central PMC9482896
DOI 10.1007/s00216-022-04240-y
PII: 10.1007/s00216-022-04240-y
Knihovny.cz E-zdroje

This work describes the development of a novel method for quantitative mapping of Hg and Se in mushroom fruit body tissues with laser ablation coupled to inductively coupled plasma-mass spectrometry (LA-ICP-MS). Different parameters of the protocol for preparation of the standards used for quantification via external calibration were assessed, e.g., the dissolution temperature of gelatin standards and the addition of chitosan and L-cysteine as additives to the gelatin-based calibration droplets to better match the sample matrix. While chitosan was not suited for this purpose, the presence of L-cysteine considerably improved the figures of merit of the calibration, leading to limits of detection of 0.006 and 0.3 µg g-1 for Hg and Se, respectively, at a pixel size of 20 × 20 µm. Further, an in-house reference material, ideally suited for the validation of the method for application to mushroom samples, was successfully prepared from a paste of Boletus edulis. The newly developed method was used to investigate the distribution of Hg and Se in tissue sections of five porcini mushroom individuals of three different species (Boletus edulis, Boletus aereus, and Boletus pinophilus) and one sample of a parasol mushroom (Macrolepiota procera). For one sample, additional areas were ablated at higher spatial resolution, with a laser spot size down to 5 µm, which allows a detailed investigation of the spatial distribution of Hg and Se in mushrooms.

Zobrazit více v PubMed

Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol. 2013 doi: 10.1021/es305071v. PubMed DOI PMC

EFSA Panel on Contaminants in the Food Chain (CONTAM) Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012 doi: 10.2903/j.efsa.2012.2985. DOI

Kalač P. Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem. 2010 doi: 10.1016/j.foodchem.2010.02.045. DOI

Zou H, Zhou C, Li Y, Yang X, Wen J, Li C, Song S, Sun C. Speciation analysis of mercury in wild edible mushrooms by high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry. Anal Bioanal Chem. 2020 doi: 10.1007/s00216-020-02515-w. PubMed DOI

Cocchi L, Vescovi L, Petrini LE, Petrini O. Heavy metals in edible mushrooms in Italy. Food Chem. 2006 doi: 10.1016/j.foodchem.2005.05.068. DOI

Falandysz J, Borovička J. Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol. 2013 doi: 10.1007/s00253-012-4552-8. PubMed DOI PMC

Gajdosechova Z, Mester Z, Feldmann J, Krupp EM. The role of selenium in mercury toxicity – current analytical techniques and future trends in analysis of selenium and mercury interactions in biological matrices. Trends Anal Chem. 2018 doi: 10.1016/j.trac.2017.12.005. DOI

Rayman MP. Selenium and human health. Lancet. 2012 doi: 10.1016/S0140-6736(11)61452-9. PubMed DOI

EFSA Panel on Dietetic Products, Nutrition and Allergies (EFSA NDA Panel) Scientific opinion on dietary reference values for selenium. EFSA J. 2014 doi: 10.2903/j.efsa.2014.3846. DOI

Kavčič A, Mikuš K, Debeljak M, van Teun Elteren J, Arčon I, Kodre A, Kump P, Karydas AG, Migliori A, Czyzycki M, Vogel-Mikuš K. Localization, ligand environment, bioavailability and toxicity of mercury in Boletus spp. and Scutiger pes-caprae mushrooms. Ecotoxicol Environ Saf. 2019. 10.1016/j.ecoenv.2019.109623. PubMed

Seyfferth AL, McClatchy C, Paukett M. Arsenic, lead, and cadmium in U.S. mushrooms and substrate in relation to dietary exposure. Environ Sci Technol. 2016 doi: 10.1021/acs.est.6b02133. PubMed DOI

Nearing MM, Koch I, Reimer KJ. Uptake and transformation of arsenic during the reproductive life stage of Agaricus bisporus and Agaricus campestris. J Environ Sci. 2016. 10.1016/j.jes.2016.06.021. PubMed

Li M-Y, Wang P, Wang J-Y, Chen X-Q, Zhao Di, Yin D-X, Luo J, Juhasz AL, Li H-B, Ma LQ. Arsenic concentrations, speciation, and localization in 141 cultivated market mushrooms: implications for arsenic exposure to humans. Environ Sci Technol. 2019 doi: 10.1021/acs.est.8b05206. PubMed DOI

Turnau K, Przybyłowicz WJ, Mesjasz-Przybyłowicz J. Heavy metal distribution in Suillus luteus mycorrhizas – as revealed by micro-PIXE analysis. Nucl Instrum Methods Phys Res Sect B. 2001. 10.1016/S0168-583X(01)00631-0.

Jurowski K, Buszewski B, Piekoszewski W. Bioanalytics in quantitive (bio)imaging/mapping of metallic elements in biological samples. Crit Rev Anal Chem. 2015 doi: 10.1080/10408347.2014.941455. PubMed DOI

Subirana MA, Paton L, Hall J, Brownlow A, Krupp EM, Feldmann J, Schaumlöffel D. Development of mercury analysis by NanoSIMS for the localization of mercury–selenium particles in whale liver. Anal Chem. 2021 doi: 10.1021/acs.analchem.1c02769. PubMed DOI

Modlitbová P, Pořízka P, Kaiser J. Laser-induced breakdown spectroscopy as a promising tool in the elemental bioimaging of plant tissues. Trends Anal Chem. 2020 doi: 10.1016/j.trac.2019.115729. DOI

Becker JS, Matusch A, Wu B. Bioimaging mass spectrometry of trace elements - recent advance and applications of LA-ICP-MS: a review. Anal Chim Acta. 2014 doi: 10.1016/j.aca.2014.04.048. PubMed DOI

Doble PA, Gonzalez de Vega R, Bishop DP, Hare DJ, Clases D. Laser ablation–inductively coupled plasma–mass spectrometry imaging in biology. Chem Rev. 2021 doi: 10.1021/acs.chemrev.0c01219. PubMed DOI

Pozebon D, Scheffler GL, Dressler VL. Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for biological sample analysis: a follow-up review. J Anal At Spectrom. 2017 doi: 10.1039/C7JA00026J. DOI

Van Malderen SJM, Van Elteren JT, Vanhaecke F. Development of a fast laser ablation-inductively coupled plasma-mass spectrometry cell for sub-μm scanning of layered materials. J Anal At Spectrom. 2015 doi: 10.1039/C4JA00137K. PubMed DOI

Bechshoft T, Luo Y, Bohart AM, Derocher AE, Richardson ES, Lunn NJ, Pearson DG. Monitoring spatially resolved trace elements in polar bear hair using single spot laser ablation ICP-MS. Ecol Indic. 2020 doi: 10.1016/j.ecolind.2020.106822. DOI

Ugarte A, Unceta N, Pécheyran C, Goicolea MA, Barrio RJ. Development of matrix-matching hydroxyapatite calibration standards for quantitative multi-element LA-ICP-MS analysis: application to the dorsal spine of fish. J Anal At Spectrom. 2011 doi: 10.1039/C1JA10037H. DOI

Schneider L, Eggins S, Maher W, Vogt RC, Krikowa F, Kinsley L, Eggins SM, Da Silveira R. An evaluation of the use of reptile dermal scutes as a non-invasive method to monitor mercury concentrations in the environment. Chemosphere. 2015 doi: 10.1016/j.chemosphere.2014.05.065. PubMed DOI

Carrasco-Gil S, Siebner H, Leduc DL, Webb SM, Millán R, Andrews JC, Hernández LE. Mercury localization and speciation in plants grown hydroponically or in a natural environment. Environ Sci Technol. 2013 doi: 10.1021/es303310t. PubMed DOI

Leitão RG, Silva MP, Diniz MS, Guerra M. Mapping the distribution of mercury (II) chloride in zebrafish organs by benchtop micro-energy dispersive X-ray fluorescence: a proof of concept. J Trace Elem Med Biol. 2022 doi: 10.1016/j.jtemb.2021.126874. PubMed DOI

Gajdosechova Z, Lawan MM, Urgast DS, Raab A, Scheckel KG, Lombi E, Kopittke PM, Loeschner K, Larsen EH, Woods G, Brownlow A, Read FL, Feldmann J, Krupp EM. In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales. Sci Rep. 2016 doi: 10.1038/srep34361. PubMed DOI PMC

Debeljak M, Van Elteren JT, Vogel-Mikuš K. Development of a 2D laser ablation inductively coupled plasma mass spectrometry mapping procedure for mercury in maize (Zea mays L.) root cross-sections. Anal Chim Acta. 2013. 10.1016/j.aca.2013.05.053. PubMed

Debeljak M, Van Elteren JT, Špruk A, Izmer A, Vanhaecke F, Vogel-Mikuš K. The role of arbuscular mycorrhiza in mercury and mineral nutrient uptake in maize. Chemosphere. 2018 doi: 10.1016/j.chemosphere.2018.08.147. PubMed DOI

Niehoff A-C, Bauer OB, Kröger S, Fingerhut S, Schulz J, Meyer S, Sperling M, Jeibmann A, Schwerdtle T, Karst U. Quantitative bioimaging to investigate the uptake of mercury species in Drosophila melanogaster. Anal Chem. 2015. 10.1021/acs.analchem.5b02500. PubMed

Monperrus M, Pécheyran C, Bolliet V. Imaging differential mercury species bioaccumulation in glass eels using isotopic tracers and laser ablation inductively coupled plasma mass spectrometry. Appl Sci. 2020 doi: 10.3390/app10072463. DOI

Iwase M, Tanaka Y-K, Suzuki N, Ogra Y. Determination of spatial mercury concentration by laser ablation-inductively coupled plasma mass spectrometry. J Toxicol Sci. 2021 doi: 10.2131/jts.46.193. PubMed DOI

Lancaster ST, Peniche G, Alzahrani A, Blanz M, Newton J, Taggart MA, Corns WT, Krupp EM, Feldmann J. Mercury speciation in Scottish raptors reveals high proportions of inorganic mercury in Scottish golden eagles (Aquila chrysaetos): potential occurrence of mercury selenide nanoparticles. Sci Total Environ. 2022. 10.1016/j.scitotenv.2022.154557. PubMed

Pamphlett R, Cherepanoff S, Too LK, Kum Jew S, Doble PA, Bishop DP. The distribution of toxic metals in the human retina and optic nerve head: implications for age-related macular degeneration. PLoS ONE. 2020 doi: 10.1371/journal.pone.0241054. PubMed DOI PMC

Limbeck A, Galler P, Bonta M, Bauer G, Nischkauer W, Vanhaecke F. Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal Bioanal Chem. 2015 doi: 10.1007/s00216-015-8858-0. PubMed DOI PMC

Barst BD, Gevertz AK, Chumchal MM, Smith JD, Rainwater TR, Drevnick PE, Hudelson KE, Hart A, Verbeck GF, Roberts AP. Laser ablation ICP-MS Co-localization of mercury and immune response in fish. Environ Sci Technol. 2011 doi: 10.1021/es201641x. PubMed DOI

Zhou J, Ni X, Fu J, Li Y, Guo W, Jin L, Hu S. Quantitation and imaging analysis of biological samples by LA-ICP-MS. At Spectrosc. 2021 doi: 10.46770/AS.2021.068. DOI

Zidar P, Kos M, Vogel-Mikuš K, van Elteren JT, Debeljak M, Žižek S. Impact of ionophore monensin on performance and Cu uptake in earthworm Eisenia andrei exposed to copper-contaminated soil. Chemosphere. 2016. 10.1016/j.chemosphere.2016.07.013. PubMed

Pozebon D, Dressler VL, Mesko MF, Matusch A, Becker JS. Bioimaging of metals in thin mouse brain section by laser ablation inductively coupled plasma mass spectrometry: novel online quantification strategy using aqueous standards. J Anal At Spectrom. 2010 doi: 10.1039/c0ja00055h. DOI

Gholap D, Verhulst J, Ceelen W, Vanhaecke F. Use of pneumatic nebulization and laser ablation–inductively coupled plasma–mass spectrometry to study the distribution and bioavailability of an intraperitoneally administered Pt-containing chemotherapeutic drug. Anal Bioanal Chem. 2012 doi: 10.1007/s00216-011-5654-3. PubMed DOI

Li Y, Guo W, Hu Z, Jin L, Hu S, Guo Q. Method development for direct multielement quantification by LA-ICP-MS in food samples. J Agric Food Chem. 2019 doi: 10.1021/acs.jafc.8b05479. PubMed DOI

Šala M, Šelih VS, Van Elteren JT. Gelatin gels as multi-element calibration standards in LA-ICP-MS bioimaging: fabrication of homogeneous standards and microhomogeneity testing. Analyst. 2017 doi: 10.1039/C7AN01361B. PubMed DOI

Van Acker T, Buckle T, Van Malderen SJM, van Willigen DM, van Unen V, van Leeuwen FWB, Vanhaecke F. High-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry for the determination of membranous receptor expression levels in breast cancer cell lines using receptor-specific hybrid tracers. Anal Chim Acta. 2019 doi: 10.1016/j.aca.2019.04.064. PubMed DOI

Costas-Rodríguez M, Van Acker T, Hastuti, Agustina AMB, Devisscher L, van Campenhout S, van Vlierberghe H, Vanhaecke F. Laser ablation-inductively coupled plasma-mass spectrometry for quantitative mapping of the copper distribution in liver tissue sections from mice with liver disease induced by common bile duct ligation. J Anal At Spectrom. 2017 doi: 10.1039/C7JA00134G. DOI

Schweikert A, Theiner S, Wernitznig D, Schoeberl A, Schaier M, Neumayer S, Keppler BK, Koellensperger G. Micro-droplet-based calibration for quantitative elemental bioimaging by LA-ICPMS. Anal Bioanal Chem. 2022 doi: 10.1007/s00216-021-03357-w. PubMed DOI PMC

Van Helden T, Braeuer S, Van Acker T, Leroux O, Van Der Straeten D, Vanhaecke F. High-speed mapping of Hg and Se in biological tissue via laser ablation – inductively coupled plasma – mass spectrometry. J Anal At Spectrom. 2022 doi: 10.1039/D2JA00131D. PubMed DOI PMC

Arnaudguilhem C, Larroque M, Sgarbura O, Michau D, Quenet F, Carrère S, Bouyssière B, Mounicou S. Toward a comprehensive study for multielemental quantitative LA-ICP MS bioimaging in soft tissues. Talanta. 2021 doi: 10.1016/j.talanta.2020.121537. PubMed DOI

Roy JC. Solubility of chitin: solvents, solution behaviors and their related mechanisms. In: Salaün F, editor. Solubility of polysaccharides. Rijeka: IntechOpen; 2017. Ch. 7.

Kalač P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric. 2013 doi: 10.1002/jsfa.5960. PubMed DOI

Jaworska G, Bernaś E. Amino acid content of frozen Agaricus bisporus and Boletus edulis mushrooms: effects of pretreatments. Int J Food Prop. 2013. 10.1080/10942912.2010.526278.

Popp M, Hann S, Koellensperger G. Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry—a review. Anal Chim Acta. 2010 doi: 10.1016/j.aca.2010.04.036. PubMed DOI

Van Acker T, Van Malderen SJM, Van Helden T, Stremtan C, Šala M, Van Elteren JT, Vanhaecke F. Analytical figures of merit of a low-dispersion aerosol transport system for high-throughput LA-ICP-MS analysis. J Anal At Spectrom. 2021 doi: 10.1039/D1JA00110H. DOI

Van Acker T, Van Malderen SJM, Colina-Vegas L, Ramachandran RK, Vanhaecke F. Selective ablation of biological tissue and single cells on a glass substrate by controlling the laser energy density of nanosecond 193 nm laser radiation. J Anal At Spectrom. 2019 doi: 10.1039/C9JA00126C. DOI

Barea-Sepúlveda M, Espada-Bellido E, Ferreiro-González M, Bouziane H, López-Castillo JG, Palma M, Barbero GF. Toxic elements and trace elements in Macrolepiota procera mushrooms from southern Spain and northern Morocco. J Food Compost Anal. 2022 doi: 10.1016/j.jfca.2022.104419. PubMed DOI PMC

Billimoria K, Douglas DN, Huelga-Suarez G, Collingwood JF, Goenaga-Infante H. Investigating the effect of species-specific calibration on the quantitative imaging of iron at mg kg−1 and selenium at μg kg−1 in tissue using laser ablation with ICP-QQQ-MS. J Anal At Spectrom. 2021 doi: 10.1039/D1JA00042J. DOI

Kovačevič M, Goessler W. Direct introduction of volatile carbon compounds into the spray chamber of an inductively coupled plasma mass spectrometer: sensitivity enhancement for selenium. Spectrochim Acta Part B. 2005 doi: 10.1016/j.sab.2005.08.003. DOI

Frick DA, Günther D. Fundamental studies on the ablation behaviour of carbon in LA-ICP-MS with respect to the suitability as internal standard. J Anal At Spectrom. 2012 doi: 10.1039/C2JA30072A. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...