Assessment of potential exposure to As, Cd, Pb and Zn in vegetable garden soils and vegetables in a mining region

. 2022 Aug 05 ; 12 (1) : 13495. [epub] 20220805

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35931715
Odkazy

PubMed 35931715
PubMed Central PMC9355989
DOI 10.1038/s41598-022-17461-z
PII: 10.1038/s41598-022-17461-z
Knihovny.cz E-zdroje

Mining and smelting activities can contaminate soils and affect farming due to high emissions and input of potentially toxic elements (PTE) into the environment. Soils (sampled from two depths) and market vegetables from vegetable gardens located within the vicinity of unconfined slag deposits from decades of mining and smelting activities in Kutná Hora, Czechia were assessed to determine to what extent they pose a health hazard to communities that use these gardens. Pseudo-total As concentrations in the soils exceeded background levels (4.5 mg kg-1) 1.9-93 times, with higher concentrations in the deeper layer. The pseudo-total concentrations of PTE in soils ranked in the order As > Zn > Cd > Pb. Phyto-available concentrations of PTE in soils were relatively low, compared to pseudo-total concentrations. Concentration of As, Cd, Pb and Zn in the vegetables exceeded guideline values, with the highest concentrations found in the fruits of cucumber, peppers, and zucchini. Despite low phyto-available PTE concentrations in soils, all the PTE concentrations in the vegetables surpassed the guidelines set by the Czech Ministry of Health and EU directive, indicating a health hazard to consumers.

Zobrazit více v PubMed

Bílek, J., Hoffman, V., & Trdlička, Z. Kutná Hora dumps. Sborník Obl. Muz. v Kutné Hoře, řada Geol.7, 1–45 (1965).

Pauliš, P., & Mikuš, M. Silver pathway—Instructional Pathway in Kutná Hora. in Stručná Historie Kutnohorského Dolování., Kuttna, Kutná Hora (1998).

Drahota P, Raus K, Rychlíková E, Rohovec J. Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic. Environ. Geochem. Health. 2017;40(4):1495–1512. doi: 10.1007/s10653-017-9999-1. PubMed DOI

Ash C, Borůvka L, Tejnecký V, Nikodem A, Šebek O, Drábek O. Potentially toxic element distribution in soils from the Ag-smelting slag of Kutná Hora (Czech Republic): Descriptive and prediction analyses. J. Geochem. Explor. 2014;144:328–336. doi: 10.1016/j.gexplo.2013.11.010. DOI

Száková J, Tlustoš P, Goessler W, Frková Z, Najmanová J. Mobility of arsenic and its compounds in soil and soil solution: The effect of soil pretreatment and extraction methods. J. Hazard. Mater. 2009;172(2–3):1244–1251. doi: 10.1016/j.jhazmat.2009.07.143. PubMed DOI

Tremlová J, et al. A profile of arsenic species in different vegetables growing in arsenic-contaminated soils. Arch. Agron. Soil Sci. 2017;63(7):918–927. doi: 10.1080/03650340.2016.1242721. DOI

Horák J, Hejcman M. 800 years of mining and smelting in Kutná Hora region (the Czech Republic)—spatial and multivariate meta-analysis of contamination studies. J. Soils Sedim. 2016;16(5):1584–1598. doi: 10.1007/s11368-015-1328-7. DOI

Jelenová H, Majzlan J, Amoako FY, Drahota P. Geochemical and mineralogical characterization of the arsenic-, iron-, and sulfur-rich mining waste dumps near Kaňk, Czech Republic. Appl. Geochemistry. 2018;97:247–255. doi: 10.1016/j.apgeochem.2018.08.029. DOI

M. of Health., “Decree No. 53/2002 (in Czech).,” 2002. [Online]. Available: https://www.zakonyprolidi.cz/cs/2002-53.

Cháb, J., et al., A brief geology of the base of the Bohemian Massif and its Carboniferous and Permian plateau (In Czech). Prague: Vydavatelství České geologické služby, 2008.

Pansu, M., & Gautheyrou, J. Mineralogical, organic and inorganic methods. in Handbook of Soil Analysis, New York, Springer (2006).

Beneš S. Content and balance of elements in spheres of the environment (In Czech) Ministry of agriculture of the Czech Republic; 1994.

Sabienë N, Rimmer D, Brazauskienë D, Rimmer D. Determination of heavy metal mobile forms by different extraction methods. Ekologija. 2004;1(1):36–41.

Horáček J, Novák P, Liebhard P, Strosser E, Babulicová M. The long-term changes in soil organic matter contents and quality in chernozems. Plant, Soil Environ. 2017;63(1):8–13. doi: 10.17221/274/2016-PSE. DOI

United States Department of Agriculture (USDA) Natural Resources Conservation Service, “Soil Quality Information Sheet. Soil Quality Indicators: pH.,” 1998. [Online]. Available: https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=nrcs142p2_052474&ext=pdf .

Bernard JH, Rost R. Encyclopaedic overview of minerals. Academia; 1992.

Fleischer M, Mandarino JA. Glossary of Mineral Species 1991. The Mineralogical Record Inc; 1991.

P. Pauliš, Mineralogical localities around Kutná Hora (In Czech). Kuttna, Kutná Hora (1999).

P. Pauliš, Minerals of Czech Republic (In Czech). Kuttna, Kutná Hora (2003).

Ash C, Tejnecký V, Borůvka L, Drábek O. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil. J. Contam. Hydrol. 2016;187:18–30. doi: 10.1016/j.jconhyd.2016.01.009. PubMed DOI

Tao Y, Zhang S, Jian W, Yuan C, Quan Shan X. “Effects of oxalate and phosphate on the release of arsenic from contaminated soils and arsenic accumulation in wheat. Chemosphere. 2006;65(8):1281–1287. doi: 10.1016/j.chemosphere.2006.04.039. PubMed DOI

Kumpiene J, Ore S, Renella G, Mench M, Lagerkvist A, Maurice C. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ. Poll. 2006;144(1):62–69. doi: 10.1016/j.envpol.2006.01.010. PubMed DOI

Xu J, Thornton I. Arsenic in garden soils and vegetable crops in Cornwall, England: Implications for human health. Environ. Geochem. Health. 1985;7(4):131–133. doi: 10.1007/BF01786639. PubMed DOI

Helm-Clark, C. Smelting Silver (2001). (PDF available online: http://www.rocks4brains.com/cat/SmeltingAg.pdf).

Fosmire GJ. Zinc toxicity. Am. J. Clin. Nutr. 1990;51(2):225–227. doi: 10.1093/ajcn/51.2.225. PubMed DOI

Kabata-Pendias A. Trace Elements in Soils and Plants. CRC Press; 2000.

Commission of the European Communities, “Commission Regulation (EC) No 118/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs,” 2006. [Online]. Available: http://data.europa.eu/eli/reg/2006/1881/2015-05-21.

Dalenberg JW, van Driel W. “Contribution of atmospheric deposition to heavy metal concentration in field crops. Netherlands. J. Agric. Sci. 1990;38:369–379. doi: 10.18174/njas.v38i3A.16594. DOI

Jolly YN, Islam A, Akbar S. Transfer of metals from soil to vegetables and possible health risk assessment. Springerplus. 2013;2(1):1–8. doi: 10.1186/2193-1801-2-385. PubMed DOI PMC

Tremlová J, et al. Arsenic compounds occurring in ruderal plant communities growing in arsenic contaminated soils. Environ. Exp. Bot. 2016;123:108–115. doi: 10.1016/j.envexpbot.2015.11.012. DOI

Králová L, Száková J, Kubík Š, Tlustǒs P, Baĺik J. The variability of arsenic and other risk element uptake by individual plant species growing on contaminated soil. Soil Sedim. Contam. 2010;19(5):617–634. doi: 10.1080/15320383.2010.499926. DOI

Alloway, B. J. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Choice Rev. Online50(07), 50–3862–50–3862 (2013). 10.5860/CHOICE.50-3862.

Laidlaw MAS, Zahran S, Pingitore N, Clague J, Devlin G, Taylor MP. Identification of lead sources in residential environments: Sydney Australia. Environ. Pollut. 2014;184:238–246. doi: 10.1016/j.envpol.2013.09.003. PubMed DOI

Izquierdo M, De Miguel E, Ortega MF, Mingot J. Bioaccessibility of metals and human health risk assessment in community urban gardens. Chemosphere. 2015;135:312–318. doi: 10.1016/j.chemosphere.2015.04.079. PubMed DOI

Bílek, J. Kutná Hora Mining. 9. Historical overview of the issues of mining, heaps and Vrchlické dam (In Czech). Kutná Hora: Kuttna (2001).

Basta NT, McGowen SL. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ. Pollut. 2004;127(1):73–82. doi: 10.1016/S0269-7491(03)00250-1. PubMed DOI

Beesley L, Moreno-Jiménez E, Gomez-Eyles JL. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 2010;158(6):2282–2287. doi: 10.1016/j.envpol.2010.02.003. PubMed DOI

Ahmad M, Upamali A, Eun J, Zhang M, Bolan N. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere. 2013;99:19–33. doi: 10.1016/j.chemosphere.2013.10.071. PubMed DOI

Kypritidou Z, Argyraki A. Geochemical interactions in the trace element–soil–clay system of treated contaminated soils by Fe-rich clays. Environ. Geochem. Health. 2021;43(7):2483–2503. doi: 10.1007/s10653-020-00542-1. PubMed DOI

Vejvodová K, Száková J, García-Sánchez M, Praus L, Romera IG, Tlustoš P. Effect of dry olive residue-based biochar and Arbuscular Mycorrhizal fungi inoculation on the nutrient status and trace element contents in wheat grown in the As-, Cd-, Pb-, and Zn-contaminated soils. J. Soil Sci. Plant Nutr. 2020;20(3):1067–1079. doi: 10.1007/s42729-020-00193-2. DOI

Vejvodová K, Drábek O, Ash C, Tejnecký V, Němeček K, Borůvka L. Effect of clay on the fractions of potentially toxic elements in contaminated soil. Soil Water Res. 2021;16(1):1–10. doi: 10.17221/13/2020-SWR. DOI

Goransson, A., Philippot, S. The use of fast growing trees as ‘metal-collectors’. In: Willow vegetation filters for municipal wastewaters and sludges: A biological purification system (1994).

Riddell-Black, D. Heavy metal uptake by fast growing willow species. In: Willow vegetation filters for municipal wastewaters and sludges: a biological purification system,” Uppsala (1994).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...