• This record comes from PubMed

Current knowledge in the use of bacteriophages to combat infections caused by Pseudomonas aeruginosa in cystic fibrosis

. 2023 Feb ; 68 (1) : 1-16. [epub] 20220805

Language English Country United States Media print-electronic

Document type Journal Article, Review

Grant support
784 Catedras, CONACYT

Links

PubMed 35931928
DOI 10.1007/s12223-022-00990-5
PII: 10.1007/s12223-022-00990-5
Knihovny.cz E-resources

Pseudomonas aeruginosa (PA) is considered the first causal agent of morbidity and mortality in people with cystic fibrosis (CF) disease. Multi-resistant strains have emerged due to prolonged treatment with specific antibiotics, so new alternatives have been sought for their control. In this context, there is a renewed interest in therapies based on bacteriophages (phages) supported by several studies suggesting that therapy based on lytic phages and biofilm degraders may be promising for the treatment of lung infections in CF patients. However, there is little clinical data about phage studies in CF and the effectiveness and safety in patients with this disease has not been clear. Therefore, studies regarding on phage characterization, selection, and evaluation in vitro and in vivo models will provide reliable information for designing effective cocktails, either using mixed phages or in combination with antibiotics, making a great progress in clinical research. Hence, this review focuses on the most relevant and recent findings on the activity of lytic phages against PA strains isolated from CF patients and hospital environments, and discusses perspectives on the use of phage therapy on the treatment of PA in CF patients.

See more in PubMed

Abedon S (2017) Information phage therapy research should report. J Pharm 10:43. https://doi.org/10.3390/ph10020043 DOI

Alemayehu D, Casey P, McAuliffe O et al (2012) Bacteriophages φMR299–2 and φNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway Cells. mBio 3:e00029–12. https://doi.org/10.1128/mBio.00029-12

Altamirano F, Barr J (2019) Phage therapy in the Postantibiotic Era. Clin Microbiol Rev 32:e00066-e118. https://doi.org/10.1128/CMR.00066-18 DOI

Alvi I, Asif M, Tabassum R et al (2020) RLP, a bacteriophage of the family Podoviridae, rescues mice from bacteremia caused by multi-drug-resistant Pseudomonas aeruginosa. Arch Virol 165:1289–1297. https://doi.org/10.1007/s00705-020-04601-x PubMed DOI

Andrade A, Kolter R (2016) Complete genome sequence of Pseudomonas aeruginosa phage AAT-1. Genome Announc 4:e00165-e216. https://doi.org/10.1128/genomeA.00165-16 DOI

Antonova N, Balabanyan V, Tkachuk A et al (2018) Physical and chemical properties of recombinant KPP10 phage lysins and their antimicrobial activity against Pseudomonas aeruginosa. Bulletin of RSMU 1: 21–27. https://doi.org/10.24075/BRSMU.2018.010

Bae H, Chung I, Sim N et al (2012) Complete genome sequence of Pseudomonas aeruginosa siphophage MP1412. J Virol 86:9537. https://doi.org/10.1128/jvi.01403-12 PubMed DOI PMC

Bae H, Cho Y (2013) Complete genome sequence of Pseudomonas aeruginosa Podophage MPK7, which requires type IV pili for infection. Genome Announc 1:e00744–13. https://doi.org/10.1128/2FgenomeA.00744-13

Beeton M, Alves D, Enright M et al (2015) Assessing phage therapy against Pseudomonas aeruginosa using a Galleria mellonella infection model. Int J Antimicrob Agents 46:196–200. https://doi.org/10.1016/j.ijantimicag.2015.04.005 PubMed DOI

Bodier E, Morello E, L’Hostis G et al (2017) Inhaled phage therapy: a promising and challenging approach to treat bacterial respiratory infections. Expert Opin Drug Deliv 14:959–972. https://doi.org/10.1080/17425247.2017.1252329 DOI

Bush K et al (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9:894–896. https://doi.org/10.1038/nrmicro2693 PubMed DOI PMC

Cafora M, Deforian G, Forti F et al (2019) Phage therapy against Pseudomonas aeruginosa infections in a cystic fibrosis zebrafish model. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-018-37636-x DOI

Centers for Disease Control and Prevention (US) (2019) Antibiotic resistance threats in the United States U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA

Chan B, Abedon S (2012) Phage therapy pharmacology: phage cocktails. Adv Appl Microbiol 78:1–23. https://doi.org/10.1016/b978-0-12-394805-2.00001-4 PubMed DOI

Chatterjee M, Anju C, Biswas L et al (2016) Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol 306:48–58. https://doi.org/10.1016/j.ijmm.2015.11.004 PubMed DOI

Chaudhry W, Concepción J, Park T et al (2017) Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa Biofilms. PLoS ONE 12:e0168615. https://doi.org/10.1371/journal.pone.0168615 PubMed DOI PMC

Chirgwin M, Dedloff M, Holban A et al (2019) Novel therapeutic strategies applied to Pseudomonas aeruginosa infections in cystic fibrosis. Mater Lett 12(4):093. https://doi.org/10.3390/ma12244093 DOI

Cooper C, Khan M, Nilsson A (2016) Adapting drug approval pathways for bacteriophage-based therapeutics. Front Microbiol 7:1209. https://doi.org/10.3389/fmicb.2016.01209 PubMed DOI PMC

Crull M, Ramos K, Caldwell E et al (2016) Change in Pseudomonas aeruginosa prevalence in cystic fibrosis adults over time. BMC Pulm Med 16: 176. https://doi.org/10.1186/2Fs12890-016-0333-y

Cystic Fibrosis Foundation Patient Registry (2012) Annual Data Report. Bethesda, MD: Cystic Fibrosis Foundation

Debarbieux L, Leduc D, Maura D et al (2010) Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 201:1096–1104. https://doi.org/10.1086/651135 PubMed DOI

Denton M, Kerr K, Mooney L, Keer V, Rajgopal A, Brownlee K, Arundel P, Conway S (2002) Transmission of colistin-resistant Pseudomonas aeruginosabetween patients attending a pediatric cystic fibrosis center. Pediatr Pulmonol 34:257–261 PubMed DOI

Dettman J, Kassen R (2020) Evolutionary genomics of niche-specific adaptation to the cystic fibrosis lung in Pseudomonas aeruginosa. Mol Biol Evol msaa226. https://doi.org/10.1093/molbev/msaa226

Doffkay Z, Dömötör D, Kovács T et al (2015) Bacteriophage therapy against plant, animal and human pathogens. Acta Biol Szeged 59:291–302

Drenkard E (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5:1213–1219. https://doi.org/10.1016/j.micinf.2003.08.009 PubMed DOI

European Centre of Disease Prevention and Control (ECDC) (2011) Antimicrobial resistance surveillance in Europe. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm

Essoh C, Blouin Y, Loukou G et al (2013) The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages. PLoS ONE 8:e60575. https://doi.org/10.1371/journal.pone.0060575 PubMed DOI PMC

Essoh C, Latino L, Midoux C et al (2015) Investigation of a large collection of Pseudomonas aeruginosa bacteriophages collected from a single environmental source in Abidjan. Côte D’ivoire Plos One 10:e0130548. https://doi.org/10.1371/journal.pone.0130548 PubMed DOI

Forti F, Roach D, Cafora M et al (2018) Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob Agents Chemother 62:e02573-e2617. https://doi.org/10.1128/aac.02573-17 PubMed DOI PMC

Friman V, Soanes-Brown D, Sierocinski P et al (2016) Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates. J Evol Biol 29:188–198. https://doi.org/10.1111/jeb.12774 PubMed DOI

Garbe J, Wesche A, Bunk B et al (2010) Characterization of JG024, a Pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions. BMC Microbiol 10:301. https://doi.org/10.1186/1471-2180-10-301 PubMed DOI PMC

Ghose C, Euler C (2020) Gram-negative bacterial lysins. J Antibiot 9: 1–13. https://doi.org/10.3390/2Fantibiotics9020074

Gill J, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14. https://doi.org/10.2174/138920110790725311 PubMed DOI

Górski A, Miedzybrodzki R, Łobocka M et al (2018) Phage therapy: what have we learned?. Viruses 10:288. https://doi.org/10.3390/v10060288 PubMed DOI PMC

Guo M, Feng C, Ren J et al (2017) A novel antimicrobial endolysin, LysPA26, against Pseudomonas aeruginosa. Front Microbiol 8:293. https://doi.org/10.3389/fmicb.2017.00293 PubMed DOI PMC

Hall A, De Vos D, Friman V et al (2012) Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl Environ Microbiol 78:5646–5652. https://doi.org/10.1128/aem.00757-12 PubMed DOI PMC

Henriksen K, Rørbo N, Rybtke M et al (2019) P. aeruginosa flow-cell biofilms are enhanced by repeated phage treatments but can be eradicated by phage–ciprofloxacin combination: —monitoring the phage–P. aeruginosa biofilms interactions. Pathog Dis 77. https://doi.org/10.1093/femspd/ftz011

Henry M, Lavigne R, Debarbieux L (2013) Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob Agents Chemother 57:5961–5968.  https://doi.org/10.1128/2FAAC.01596-13

Hraiech S, Brégeon F, Rolain J (2015) Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status. Drug Des Devel Ther 9:3653–3663. https://doi.org/10.2147/dddt.s53123 PubMed DOI PMC

Hurley M, Cámara M, Smyth A (2012) Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Eur Respir 40:1014–1023. https://doi.org/10.1183/09031936.00042012 DOI

Issa R, Chanishvili N, Caplin J et al (2019) Antibiofilm potential of purified environmental bacteriophage preparations against early stage Pseudomonas aeruginosa biofilms. J Appl Microbiol 126:1657–1667. https://doi.org/10.1111/jam.14241 PubMed DOI

Jamal M, Andleeb S, Jalil F et al (2017) Isolation and characterization of a bacteriophage and its utilization against multi-drug resistant Pseudomonas aeruginosa-2995. Life Sci 190:21–28. https://doi.org/10.1016/j.lfs.2017.09.034 PubMed DOI

Jeon J, Kim J, Yong D et al (2012) Complete genome sequence of the bacteriophage YMC01/01/P52 PAE BP, which causes lysis of verona integron-encoded metallo-β-lactamase-producing, carbapenem-resistant Pseudomonas aeruginosa. J Virol 86:13876–13877. https://doi.org/10.1128/jvi.02730-12 PubMed DOI PMC

Jeon J, Yong D (2019) Two novel bacteriophages improve survival in Galleria mellonella infection and mouse acute pneumonia models infected with extensively drug-resistant Pseudomonas aeruginosa. Appl Environ Microbiol 85:e02900-e2918. https://doi.org/10.1128/aem.02900-18 PubMed DOI PMC

Johansen H, Moskowitz S, Ciofu O, Pressler T, Hoiby N (2008) Spread of colistin resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. J Cyst Fibros 7:391–397 PubMed DOI

Kakasis A, Panitsa G (2019) Bacteriophage therapy as an alternative treatment for human infections. a comprehensive review. Int J Antimicrob Agents 53:16–21. https://doi.org/10.1016/j.ijantimicag.2018.09.004 PubMed DOI

Karumidze N, Thomas J, Kvatadze N et al (2012) Characterization of lytic Pseudomonas aeruginosa bacteriophages via biological properties and genomic sequences. Appl Microbiol Biotechnol 94:1609–1617. https://doi.org/10.1007/s00253-012-4119-8 PubMed DOI

Kim M, Cha K, Myung H (2012a) Complete genome of Pseudomonas aeruginosa Phage PA26. J Virol 86:10244. https://doi.org/10.1128/jvi.01630-12 PubMed DOI PMC

Kim S, Rahman M, Kim J (2012b) Complete genome sequence of Pseudomonas aeruginosa lytic bacteriophage PA1Ø which resembles temperate bacteriophage D3112. J Virol 3400–3401. https://doi.org/10.1128/2FJVI.07191-11

Kim S, Rahman M, Seol S et al (2012c) Pseudomonas aeruginosa bacteriophage PA1Ø requires type IV pili for infection and shows broad bactericidal and biofilm removal activities. Appl Environ Microbiol 78:6380–6385. https://doi.org/10.1128/aem.00648-12 PubMed DOI PMC

Knezevic P, Obreht D, Curcin S et al (2011) Phages of Pseudomonas aeruginosa: response to environmental factors and in vitro ability to inhibit bacterial growth and biofilm formation. J Appl Microbiol 111:245–254. https://doi.org/10.1111/j.1365-2672.2011.05043.x PubMed DOI

Knezevic P, Curcin S, Aleksic V et al (2013) Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa. Microbiol Res 164:55–60. https://doi.org/10.1016/j.resmic.2012.08.008 DOI

Krylov V (2014) Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy. Adv Virus Res 88:227–278. https://doi.org/10.1016/b978-0-12-800098-4.00005-2 PubMed DOI

Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28:591–595. https://doi.org/10.1016/j.tibtech.2010.08.001 PubMed DOI

Larché J, Pouillot F, Essoh C et al (2012) Rapid identification of international multidrug-resistant Pseudomonas aeruginosa clones by multiple-locus variable number of tandem repeats analysis and investigation of their susceptibility to lytic bacteriophages. Antimicrob Agents Chemother 56:6175–6180. https://doi.org/10.1128/aac.01233-12 PubMed DOI PMC

Lavelle G, White M, Browne N, McElvaney N, Reeves E (2016) Animal models of cystic fibrosis pathology: phenotypic parallels and divergences. Biomed Res Int 5258727.  https://doi.org/10.1155/2016/5258727

Li G, Shen M, Yang Y et al (2018) Adaptation of Pseudomonas aeruginosa to phage PaP1 predation via o-antigen polymerase mutation. Front Microbiol 9:1170. https://doi.org/10.3389/2Ffmicb.2018.01170

Lin Y, Kyung R, Rao G et al (2020) Pharmacokinetics/pharmacodynamics of antipseudomonal bacteriophage therapy in rats: a proof-of-concept study. Clin Microbiol Infect S1198–743X(20)30267–6. https://doi.org/10.1016/j.cmi.2020.04.039

Lindberg H, McKean K, Wang I (2014) Phage fitness may help predict phage therapy efficacy. bacteriophage 4: e964081. https://doi.org/10.4161/2F21597073.2014.964081

Mi L, Liu Y, Wang C et al (2019) Identification of a lytic Pseudomonas aeruginosa phage depolymerase and its anti-biofilm effect and bactericidal contribution to serum. Virus Genes 55:394–405. https://doi.org/10.1007/s11262-019-01660-4 PubMed DOI

Morello E, Saussereau E, Maura D et al (2011) Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLoS ONE 6:e16963. https://doi.org/10.1371/journal.pone.0016963 PubMed DOI PMC

Nafee N, Husari A, Maurer C et al (2014) Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release 192:131–140. https://doi.org/10.1016/j.jconrel.2014.06.055 PubMed DOI

Newton G, Daniels C, Burrows L, Kropinski A, Clarke A, Lam J (2001) Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. Mol Microbiol 39:1237–1247. https://doi.org/10.1111/j.1365-2958.2001.02311.x PubMed DOI

Olszak T, Zarnowiec P, Kaca W et al (2015) In vitro and in vivo antibacterial activity of environmental bacteriophages against Pseudomonas aeruginosa strains from cystic fibrosis patients. Appl Microbiol Biotechnol 99:6021–6033. https://doi.org/10.1007/s00253-015-6492-6 PubMed DOI PMC

Ong S, Azam A, Sasahara T et al (2020) Characterization of Pseudomonas lytic phages and their application as a cocktail with antibiotics in controlling Pseudomonas aeruginosa. J Biosci Bioeng 129:693–699. https://doi.org/10.1016/j.jbiosc.2020.02.001 PubMed DOI

Pabary R, Singh C, Morales S et al (2016) Antipseudomonal bacteriophage reduces infective burden and inflammatory response in murine lung. Antimicrob Agents Chemother 60:744–751. https://doi.org/10.1128/aac.01426-15 PubMed DOI PMC

Parasion S, Kwiatek M, Gryko R et al (2014) Bacteriophages as an alternative strategy for fighting biofilm development. Polish J Microbiol 63: 137–145. https://doi.org/10.33073/pjm-2014-019

Pires D, Sillankorva S, Faustino A et al (2011) Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Microbiol Res 162: 798e806. https://doi.org/10.1016/j.resmic.2011.06.010

Pires D, Kropinski A, Azeredo J et al (2014) complete genome sequence of the Pseudomonas aeruginosa bacteriophage phiIBB-PAA2. Genome Announc 2:e01102-e1113. https://doi.org/10.1128/genomea.01102-13 PubMed DOI PMC

Pires D, Sillankorva S, Kropinski A et al (2015) Complete genome sequence of Pseudomonas aeruginosa phage vB_PaeM_CEB_DP1. Genome Announc 3:e00918–15. https://doi.org/10.1128/2FgenomeA.00918-15

Pires D, Melo L, Boas D et al (2017) Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol 39:48–56. https://doi.org/10.1016/j.mib.2017.09.004 PubMed DOI

Pourcel C, Midoux C, Latino L et al (2016) Complete genome sequences of Pseudomonas aeruginosa phages vB_PaeP_PcyII-10_P3P1 and vB_PaeM_PcyII-10_PII10A. Genome Announc 4:e00916–16. https://doi.org/10.1128/2FgenomeA.00916-16

Projan S (2003) Why is big Pharma getting out of antibacterial drug discovery? Curr Opin Microbiol 6:427–430. https://doi.org/10.1016/j.mib.2003.08.003 PubMed DOI

Red Hospital for Epidemiological Surveillance (RHOVE) (2015) Annual Rep 61

Rossitto M, Fiscarelli E, Rosati P (2018) Challenges and promises for planning future clinical research into bacteriophage therapy against Pseudomonas aeruginosa in cystic fibrosis. An Argumentative Review Front Microbiol 9:775. https://doi.org/10.3389/fmicb.2018.00775 PubMed DOI

Sadikot R, Blackwell T, Christman J, Prince A (2005) Am J Respir Crit Care Med 171:1209–1223. https://doi.org/10.1164/rccm.200408-1044SO PubMed DOI PMC

Sagar S, Kumar R, Kaistha S (2016) Efficacy of phage and ciprofloxacin co-therapy on the formation and eradication of Pseudomonas aeruginosa biofilms. Arab J Sci Eng 42:95–103. https://doi.org/10.1007/s13369-016-2194-3 DOI

Sahota J, Smith C, Radhakrishnan P et al (2015) Bacteriophage delivery by nebulization and efficacy against phenotypically diverse Pseudomonas aeruginosa from cystic fibrosis patients. J Aerosol Med Pulm Drug Deliv 28:1–8. https://doi.org/10.1089/jamp.2014.1172 DOI

Saussereau E, Debarbieux L (2012) Bacteriophages in the experimental treatment of Pseudomonas aeruginosa infections in mice. Adv Virus Res 83:123–141. https://doi.org/10.1016/b978-0-12-394438-2.00004-9 PubMed DOI

Saussereau E, Vachier I, Chiron R et al (2014) Effectiveness of bacteriophages in the sputum of cystic fibrosis patients. Clin Microbiol Infect 20. https://doi.org/10.1111/1469-0691.12712

Sepúlveda O, Kameyama L, Guarneros G (2012) High diversity and novel species of Pseudomonas aeruginosa bacteriophages. Appl Environ Microbiol 78:4510–4515. https://doi.org/10.1128/aem.00065-12 DOI

Shiley J, Comfort K, Robinson J (2017) Immunogenicity and antimicrobial effectiveness of Pseudomonas aeruginosa specific bacteriophage in a human lung in vitro model. Appl Microbiol Biotechnol 101:7977–7985. https://doi.org/10.1007/s00253-017-8504-1 PubMed DOI

Snyder L (1995) Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents?. Mol Microbiol 15:415–420. https://doi.org/10.1111/j.1365-2958.1995.tb02255.x PubMed DOI

Subedi D, Vijay A, Kohli G et al (2018) Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Sci Rep 8:15668. https://doi.org/10.1038/s41598-018-34020-7

Sybesma W, Rohde C, Bardy P et al (2018) Silk route to the acceptance and re-implementation of bacteriophage therapy–Part II. J Antibiot 7:1–23. https://doi.org/10.3390/2Fantibiotics7020035

Sykilinda N, Bondar A, Gorshkova A et al (2014) Complete genome sequence of the novel giant Pseudomonas phage PaBG. Genome Announc 2:e00929–13. https://doi.org/10.1128/2FgenomeA.00929-13

Tagliaferri T, Jansen M, Horz H (2018) Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front Cell Infect Microbiol 9:22. https://doi.org/10.3389/2Ffcimb.2019.00022

Tang C, Deng C, Zhang Y et al (2018) Characterization and genomic analyses of Pseudomonas aeruginosa Podovirus TC6: establishment of genus Pa11virus. Front Microbiol 9:2561. https://doi.org/10.3389/fmicb.2018.02561 PubMed DOI PMC

Thiel K (2004) Old dogma, new tricks–21st century phage therapy. Nat Biotechnol 22:31–36. https://doi.org/10.1038/nbt0104-3 PubMed DOI

Torres C, Sánchez F, Vasse M et al (2014) A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PLoS ONE 9:e106628. https://doi.org/10.1371/journal.pone.0106628 DOI

Trend S, Fonceca A, Ditcham W et al (2017) The potential of phage therapy in cystic fibrosis: essential human-bacterial-phage interactions and delivery considerations for use in Pseudomonas aeruginosa-infected airways. J Cyst Fibros 16:663–670. https://doi.org/10.1016/j.jcf.2017.06.012 PubMed DOI

Trend S, Chang B, O’Dea M et al (2018) Use of a primary epithelial cell screening tool to investigate phage therapy in cystic fibrosis. Front Pharmacol 9:1330. https://doi.org/10.3389/fphar.2018.01330 PubMed DOI PMC

Uchiyama J, Suzuki M, Nishifuji K et al (2016) Analyses of short-term antagonistic evolution of Pseudomonas aeruginosa strain PAO1 and Phage KPP22 (Myoviridae Family, PB1-Like Virus Genus). Appl Environ Microbiol 82:4482–4491. https://doi.org/10.1128/aem.00090-16 PubMed DOI PMC

Verbeken G, Pirnay J, De Vos D et al (2012) Optimizing the European Regulatory Framework for Sustainable Bacteriophage Therapy in Human Medicine. Arch Immunol Ther Exp 60:161–172. https://doi.org/10.1007/s00005-012-0175-0 DOI

Verbeken G, Pirnay J, Lavigne R et al (2014) Call for a Dedicated European Legal Framework for Bacteriophage Therapy. Arch Immunol Ther Exp 62:117–129. https://doi.org/10.1007/s00005-014-0269-y DOI

Waters E, Neill D, Kaman B et al (2017) Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax 72:666–667. https://doi.org/10.1136/thoraxjnl-2016-209265 PubMed DOI

Wienhold S, Lienau J, Witzenrath M (2019) towards inhaled phage therapy in Western Europe. viruses 11:295. https://doi.org/10.3390/2Fv11030295

Wlodarczyk D, Olszak T, Arabski M et al (2015) Characterization of the newly isolated lytic bacteriophages KTN6 and KT28 And Their Efficacy Against Pseudomonas aeruginosa biofilm. PLoS ONE 10:e0127603. https://doi.org/10.1371/journal.pone.0127603 DOI

Wlodarczyk K, Vandenheuvel D, Jang H et al (2016) A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections. Sci Rep 6.  https://doi.org/10.1038/srep28115

Yamaguchi K, Miyata R, Shigehisa R et al (2014) Genome analysis of Pseudomonas aeruginosa bacteriophage KPP23, belonging to the family Siphoviridae. Genome Announc 2:e00233-e314. https://doi.org/10.1128/genomea.00233-14 PubMed DOI PMC

Yang Y, Lu S, Shen W et al (2016) Characterization of the first double stranded RNA bacteriophage infecting Pseudomonas aeruginosa. Sci Rep 6. https://doi.org/10.1038/2Fsrep38795

Yang Y, Le S, Shen W et al (2018) Antibacterial activity of a lytic enzyme encoded by Pseudomonas aeruginosa double stranded RNA bacteriophage phiYY. Front Microbiol 9:1778. https://doi.org/10.3389/fmicb.2018.01778 PubMed DOI PMC

Yang Y, Shen W, Zhong Q et al (2020) Development of a bacteriophage cocktail to constrain the emergence of phage-resistant Pseudomonas aeruginosa. Front Microbiol 11:327. https://doi.org/10.3389/2Ffmicb.2020.00327

Yu S, Huang H, Hao Y et al (2018) Complete genome sequence of the myoviral bacteriophage YS35, which causes the lysis of a multidrug-resistant Pseudomonas aeruginosa strain. Genome Announc 6:e01395–17. https://doi.org/10.1128/2FgenomeA.01395-17

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...