Current knowledge in the use of bacteriophages to combat infections caused by Pseudomonas aeruginosa in cystic fibrosis
Language English Country United States Media print-electronic
Document type Journal Article, Review
Grant support
784
Catedras, CONACYT
PubMed
35931928
DOI
10.1007/s12223-022-00990-5
PII: 10.1007/s12223-022-00990-5
Knihovny.cz E-resources
- Keywords
- Bacteriophage, Cystic fibrosis, Multi-resistant strains, Phage therapy, Pseudomonas aeruginosa,
- MeSH
- Anti-Bacterial Agents MeSH
- Bacteriophages * MeSH
- Cystic Fibrosis * MeSH
- Pseudomonas Phages * MeSH
- Humans MeSH
- Pseudomonas Infections * MeSH
- Pseudomonas aeruginosa MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
Pseudomonas aeruginosa (PA) is considered the first causal agent of morbidity and mortality in people with cystic fibrosis (CF) disease. Multi-resistant strains have emerged due to prolonged treatment with specific antibiotics, so new alternatives have been sought for their control. In this context, there is a renewed interest in therapies based on bacteriophages (phages) supported by several studies suggesting that therapy based on lytic phages and biofilm degraders may be promising for the treatment of lung infections in CF patients. However, there is little clinical data about phage studies in CF and the effectiveness and safety in patients with this disease has not been clear. Therefore, studies regarding on phage characterization, selection, and evaluation in vitro and in vivo models will provide reliable information for designing effective cocktails, either using mixed phages or in combination with antibiotics, making a great progress in clinical research. Hence, this review focuses on the most relevant and recent findings on the activity of lytic phages against PA strains isolated from CF patients and hospital environments, and discusses perspectives on the use of phage therapy on the treatment of PA in CF patients.
CONACYT Centro de Investigación en Alimentación y Desarrollo A C Culiacán Sinaloa Mexico
Division of Genomic Medicine Centro Médico Nacional 20 de Noviembre ISSSTE Mexico City Mexico
Postgraduate in Genomic Sciences Universidad Autónoma de la Ciudad de México Mexico City Mexico
See more in PubMed
Abedon S (2017) Information phage therapy research should report. J Pharm 10:43. https://doi.org/10.3390/ph10020043 DOI
Alemayehu D, Casey P, McAuliffe O et al (2012) Bacteriophages φMR299–2 and φNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway Cells. mBio 3:e00029–12. https://doi.org/10.1128/mBio.00029-12
Altamirano F, Barr J (2019) Phage therapy in the Postantibiotic Era. Clin Microbiol Rev 32:e00066-e118. https://doi.org/10.1128/CMR.00066-18 DOI
Alvi I, Asif M, Tabassum R et al (2020) RLP, a bacteriophage of the family Podoviridae, rescues mice from bacteremia caused by multi-drug-resistant Pseudomonas aeruginosa. Arch Virol 165:1289–1297. https://doi.org/10.1007/s00705-020-04601-x PubMed DOI
Andrade A, Kolter R (2016) Complete genome sequence of Pseudomonas aeruginosa phage AAT-1. Genome Announc 4:e00165-e216. https://doi.org/10.1128/genomeA.00165-16 DOI
Antonova N, Balabanyan V, Tkachuk A et al (2018) Physical and chemical properties of recombinant KPP10 phage lysins and their antimicrobial activity against Pseudomonas aeruginosa. Bulletin of RSMU 1: 21–27. https://doi.org/10.24075/BRSMU.2018.010
Bae H, Chung I, Sim N et al (2012) Complete genome sequence of Pseudomonas aeruginosa siphophage MP1412. J Virol 86:9537. https://doi.org/10.1128/jvi.01403-12 PubMed DOI PMC
Bae H, Cho Y (2013) Complete genome sequence of Pseudomonas aeruginosa Podophage MPK7, which requires type IV pili for infection. Genome Announc 1:e00744–13. https://doi.org/10.1128/2FgenomeA.00744-13
Beeton M, Alves D, Enright M et al (2015) Assessing phage therapy against Pseudomonas aeruginosa using a Galleria mellonella infection model. Int J Antimicrob Agents 46:196–200. https://doi.org/10.1016/j.ijantimicag.2015.04.005 PubMed DOI
Bodier E, Morello E, L’Hostis G et al (2017) Inhaled phage therapy: a promising and challenging approach to treat bacterial respiratory infections. Expert Opin Drug Deliv 14:959–972. https://doi.org/10.1080/17425247.2017.1252329 DOI
Bush K et al (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9:894–896. https://doi.org/10.1038/nrmicro2693 PubMed DOI PMC
Cafora M, Deforian G, Forti F et al (2019) Phage therapy against Pseudomonas aeruginosa infections in a cystic fibrosis zebrafish model. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-018-37636-x DOI
Centers for Disease Control and Prevention (US) (2019) Antibiotic resistance threats in the United States U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA
Chan B, Abedon S (2012) Phage therapy pharmacology: phage cocktails. Adv Appl Microbiol 78:1–23. https://doi.org/10.1016/b978-0-12-394805-2.00001-4 PubMed DOI
Chatterjee M, Anju C, Biswas L et al (2016) Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol 306:48–58. https://doi.org/10.1016/j.ijmm.2015.11.004 PubMed DOI
Chaudhry W, Concepción J, Park T et al (2017) Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa Biofilms. PLoS ONE 12:e0168615. https://doi.org/10.1371/journal.pone.0168615 PubMed DOI PMC
Chirgwin M, Dedloff M, Holban A et al (2019) Novel therapeutic strategies applied to Pseudomonas aeruginosa infections in cystic fibrosis. Mater Lett 12(4):093. https://doi.org/10.3390/ma12244093 DOI
Cooper C, Khan M, Nilsson A (2016) Adapting drug approval pathways for bacteriophage-based therapeutics. Front Microbiol 7:1209. https://doi.org/10.3389/fmicb.2016.01209 PubMed DOI PMC
Crull M, Ramos K, Caldwell E et al (2016) Change in Pseudomonas aeruginosa prevalence in cystic fibrosis adults over time. BMC Pulm Med 16: 176. https://doi.org/10.1186/2Fs12890-016-0333-y
Cystic Fibrosis Foundation Patient Registry (2012) Annual Data Report. Bethesda, MD: Cystic Fibrosis Foundation
Debarbieux L, Leduc D, Maura D et al (2010) Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 201:1096–1104. https://doi.org/10.1086/651135 PubMed DOI
Denton M, Kerr K, Mooney L, Keer V, Rajgopal A, Brownlee K, Arundel P, Conway S (2002) Transmission of colistin-resistant Pseudomonas aeruginosabetween patients attending a pediatric cystic fibrosis center. Pediatr Pulmonol 34:257–261 PubMed DOI
Dettman J, Kassen R (2020) Evolutionary genomics of niche-specific adaptation to the cystic fibrosis lung in Pseudomonas aeruginosa. Mol Biol Evol msaa226. https://doi.org/10.1093/molbev/msaa226
Doffkay Z, Dömötör D, Kovács T et al (2015) Bacteriophage therapy against plant, animal and human pathogens. Acta Biol Szeged 59:291–302
Drenkard E (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5:1213–1219. https://doi.org/10.1016/j.micinf.2003.08.009 PubMed DOI
European Centre of Disease Prevention and Control (ECDC) (2011) Antimicrobial resistance surveillance in Europe. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm
Essoh C, Blouin Y, Loukou G et al (2013) The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages. PLoS ONE 8:e60575. https://doi.org/10.1371/journal.pone.0060575 PubMed DOI PMC
Essoh C, Latino L, Midoux C et al (2015) Investigation of a large collection of Pseudomonas aeruginosa bacteriophages collected from a single environmental source in Abidjan. Côte D’ivoire Plos One 10:e0130548. https://doi.org/10.1371/journal.pone.0130548 PubMed DOI
Forti F, Roach D, Cafora M et al (2018) Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob Agents Chemother 62:e02573-e2617. https://doi.org/10.1128/aac.02573-17 PubMed DOI PMC
Friman V, Soanes-Brown D, Sierocinski P et al (2016) Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates. J Evol Biol 29:188–198. https://doi.org/10.1111/jeb.12774 PubMed DOI
Garbe J, Wesche A, Bunk B et al (2010) Characterization of JG024, a Pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions. BMC Microbiol 10:301. https://doi.org/10.1186/1471-2180-10-301 PubMed DOI PMC
Ghose C, Euler C (2020) Gram-negative bacterial lysins. J Antibiot 9: 1–13. https://doi.org/10.3390/2Fantibiotics9020074
Gill J, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14. https://doi.org/10.2174/138920110790725311 PubMed DOI
Górski A, Miedzybrodzki R, Łobocka M et al (2018) Phage therapy: what have we learned?. Viruses 10:288. https://doi.org/10.3390/v10060288 PubMed DOI PMC
Guo M, Feng C, Ren J et al (2017) A novel antimicrobial endolysin, LysPA26, against Pseudomonas aeruginosa. Front Microbiol 8:293. https://doi.org/10.3389/fmicb.2017.00293 PubMed DOI PMC
Hall A, De Vos D, Friman V et al (2012) Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl Environ Microbiol 78:5646–5652. https://doi.org/10.1128/aem.00757-12 PubMed DOI PMC
Henriksen K, Rørbo N, Rybtke M et al (2019) P. aeruginosa flow-cell biofilms are enhanced by repeated phage treatments but can be eradicated by phage–ciprofloxacin combination: —monitoring the phage–P. aeruginosa biofilms interactions. Pathog Dis 77. https://doi.org/10.1093/femspd/ftz011
Henry M, Lavigne R, Debarbieux L (2013) Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob Agents Chemother 57:5961–5968. https://doi.org/10.1128/2FAAC.01596-13
Hraiech S, Brégeon F, Rolain J (2015) Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status. Drug Des Devel Ther 9:3653–3663. https://doi.org/10.2147/dddt.s53123 PubMed DOI PMC
Hurley M, Cámara M, Smyth A (2012) Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Eur Respir 40:1014–1023. https://doi.org/10.1183/09031936.00042012 DOI
Issa R, Chanishvili N, Caplin J et al (2019) Antibiofilm potential of purified environmental bacteriophage preparations against early stage Pseudomonas aeruginosa biofilms. J Appl Microbiol 126:1657–1667. https://doi.org/10.1111/jam.14241 PubMed DOI
Jamal M, Andleeb S, Jalil F et al (2017) Isolation and characterization of a bacteriophage and its utilization against multi-drug resistant Pseudomonas aeruginosa-2995. Life Sci 190:21–28. https://doi.org/10.1016/j.lfs.2017.09.034 PubMed DOI
Jeon J, Kim J, Yong D et al (2012) Complete genome sequence of the bacteriophage YMC01/01/P52 PAE BP, which causes lysis of verona integron-encoded metallo-β-lactamase-producing, carbapenem-resistant Pseudomonas aeruginosa. J Virol 86:13876–13877. https://doi.org/10.1128/jvi.02730-12 PubMed DOI PMC
Jeon J, Yong D (2019) Two novel bacteriophages improve survival in Galleria mellonella infection and mouse acute pneumonia models infected with extensively drug-resistant Pseudomonas aeruginosa. Appl Environ Microbiol 85:e02900-e2918. https://doi.org/10.1128/aem.02900-18 PubMed DOI PMC
Johansen H, Moskowitz S, Ciofu O, Pressler T, Hoiby N (2008) Spread of colistin resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. J Cyst Fibros 7:391–397 PubMed DOI
Kakasis A, Panitsa G (2019) Bacteriophage therapy as an alternative treatment for human infections. a comprehensive review. Int J Antimicrob Agents 53:16–21. https://doi.org/10.1016/j.ijantimicag.2018.09.004 PubMed DOI
Karumidze N, Thomas J, Kvatadze N et al (2012) Characterization of lytic Pseudomonas aeruginosa bacteriophages via biological properties and genomic sequences. Appl Microbiol Biotechnol 94:1609–1617. https://doi.org/10.1007/s00253-012-4119-8 PubMed DOI
Kim M, Cha K, Myung H (2012a) Complete genome of Pseudomonas aeruginosa Phage PA26. J Virol 86:10244. https://doi.org/10.1128/jvi.01630-12 PubMed DOI PMC
Kim S, Rahman M, Kim J (2012b) Complete genome sequence of Pseudomonas aeruginosa lytic bacteriophage PA1Ø which resembles temperate bacteriophage D3112. J Virol 3400–3401. https://doi.org/10.1128/2FJVI.07191-11
Kim S, Rahman M, Seol S et al (2012c) Pseudomonas aeruginosa bacteriophage PA1Ø requires type IV pili for infection and shows broad bactericidal and biofilm removal activities. Appl Environ Microbiol 78:6380–6385. https://doi.org/10.1128/aem.00648-12 PubMed DOI PMC
Knezevic P, Obreht D, Curcin S et al (2011) Phages of Pseudomonas aeruginosa: response to environmental factors and in vitro ability to inhibit bacterial growth and biofilm formation. J Appl Microbiol 111:245–254. https://doi.org/10.1111/j.1365-2672.2011.05043.x PubMed DOI
Knezevic P, Curcin S, Aleksic V et al (2013) Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa. Microbiol Res 164:55–60. https://doi.org/10.1016/j.resmic.2012.08.008 DOI
Krylov V (2014) Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy. Adv Virus Res 88:227–278. https://doi.org/10.1016/b978-0-12-800098-4.00005-2 PubMed DOI
Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28:591–595. https://doi.org/10.1016/j.tibtech.2010.08.001 PubMed DOI
Larché J, Pouillot F, Essoh C et al (2012) Rapid identification of international multidrug-resistant Pseudomonas aeruginosa clones by multiple-locus variable number of tandem repeats analysis and investigation of their susceptibility to lytic bacteriophages. Antimicrob Agents Chemother 56:6175–6180. https://doi.org/10.1128/aac.01233-12 PubMed DOI PMC
Lavelle G, White M, Browne N, McElvaney N, Reeves E (2016) Animal models of cystic fibrosis pathology: phenotypic parallels and divergences. Biomed Res Int 5258727. https://doi.org/10.1155/2016/5258727
Li G, Shen M, Yang Y et al (2018) Adaptation of Pseudomonas aeruginosa to phage PaP1 predation via o-antigen polymerase mutation. Front Microbiol 9:1170. https://doi.org/10.3389/2Ffmicb.2018.01170
Lin Y, Kyung R, Rao G et al (2020) Pharmacokinetics/pharmacodynamics of antipseudomonal bacteriophage therapy in rats: a proof-of-concept study. Clin Microbiol Infect S1198–743X(20)30267–6. https://doi.org/10.1016/j.cmi.2020.04.039
Lindberg H, McKean K, Wang I (2014) Phage fitness may help predict phage therapy efficacy. bacteriophage 4: e964081. https://doi.org/10.4161/2F21597073.2014.964081
Mi L, Liu Y, Wang C et al (2019) Identification of a lytic Pseudomonas aeruginosa phage depolymerase and its anti-biofilm effect and bactericidal contribution to serum. Virus Genes 55:394–405. https://doi.org/10.1007/s11262-019-01660-4 PubMed DOI
Morello E, Saussereau E, Maura D et al (2011) Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLoS ONE 6:e16963. https://doi.org/10.1371/journal.pone.0016963 PubMed DOI PMC
Nafee N, Husari A, Maurer C et al (2014) Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release 192:131–140. https://doi.org/10.1016/j.jconrel.2014.06.055 PubMed DOI
Newton G, Daniels C, Burrows L, Kropinski A, Clarke A, Lam J (2001) Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. Mol Microbiol 39:1237–1247. https://doi.org/10.1111/j.1365-2958.2001.02311.x PubMed DOI
Olszak T, Zarnowiec P, Kaca W et al (2015) In vitro and in vivo antibacterial activity of environmental bacteriophages against Pseudomonas aeruginosa strains from cystic fibrosis patients. Appl Microbiol Biotechnol 99:6021–6033. https://doi.org/10.1007/s00253-015-6492-6 PubMed DOI PMC
Ong S, Azam A, Sasahara T et al (2020) Characterization of Pseudomonas lytic phages and their application as a cocktail with antibiotics in controlling Pseudomonas aeruginosa. J Biosci Bioeng 129:693–699. https://doi.org/10.1016/j.jbiosc.2020.02.001 PubMed DOI
Pabary R, Singh C, Morales S et al (2016) Antipseudomonal bacteriophage reduces infective burden and inflammatory response in murine lung. Antimicrob Agents Chemother 60:744–751. https://doi.org/10.1128/aac.01426-15 PubMed DOI PMC
Parasion S, Kwiatek M, Gryko R et al (2014) Bacteriophages as an alternative strategy for fighting biofilm development. Polish J Microbiol 63: 137–145. https://doi.org/10.33073/pjm-2014-019
Pires D, Sillankorva S, Faustino A et al (2011) Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Microbiol Res 162: 798e806. https://doi.org/10.1016/j.resmic.2011.06.010
Pires D, Kropinski A, Azeredo J et al (2014) complete genome sequence of the Pseudomonas aeruginosa bacteriophage phiIBB-PAA2. Genome Announc 2:e01102-e1113. https://doi.org/10.1128/genomea.01102-13 PubMed DOI PMC
Pires D, Sillankorva S, Kropinski A et al (2015) Complete genome sequence of Pseudomonas aeruginosa phage vB_PaeM_CEB_DP1. Genome Announc 3:e00918–15. https://doi.org/10.1128/2FgenomeA.00918-15
Pires D, Melo L, Boas D et al (2017) Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol 39:48–56. https://doi.org/10.1016/j.mib.2017.09.004 PubMed DOI
Pourcel C, Midoux C, Latino L et al (2016) Complete genome sequences of Pseudomonas aeruginosa phages vB_PaeP_PcyII-10_P3P1 and vB_PaeM_PcyII-10_PII10A. Genome Announc 4:e00916–16. https://doi.org/10.1128/2FgenomeA.00916-16
Projan S (2003) Why is big Pharma getting out of antibacterial drug discovery? Curr Opin Microbiol 6:427–430. https://doi.org/10.1016/j.mib.2003.08.003 PubMed DOI
Red Hospital for Epidemiological Surveillance (RHOVE) (2015) Annual Rep 61
Rossitto M, Fiscarelli E, Rosati P (2018) Challenges and promises for planning future clinical research into bacteriophage therapy against Pseudomonas aeruginosa in cystic fibrosis. An Argumentative Review Front Microbiol 9:775. https://doi.org/10.3389/fmicb.2018.00775 PubMed DOI
Sadikot R, Blackwell T, Christman J, Prince A (2005) Am J Respir Crit Care Med 171:1209–1223. https://doi.org/10.1164/rccm.200408-1044SO PubMed DOI PMC
Sagar S, Kumar R, Kaistha S (2016) Efficacy of phage and ciprofloxacin co-therapy on the formation and eradication of Pseudomonas aeruginosa biofilms. Arab J Sci Eng 42:95–103. https://doi.org/10.1007/s13369-016-2194-3 DOI
Sahota J, Smith C, Radhakrishnan P et al (2015) Bacteriophage delivery by nebulization and efficacy against phenotypically diverse Pseudomonas aeruginosa from cystic fibrosis patients. J Aerosol Med Pulm Drug Deliv 28:1–8. https://doi.org/10.1089/jamp.2014.1172 DOI
Saussereau E, Debarbieux L (2012) Bacteriophages in the experimental treatment of Pseudomonas aeruginosa infections in mice. Adv Virus Res 83:123–141. https://doi.org/10.1016/b978-0-12-394438-2.00004-9 PubMed DOI
Saussereau E, Vachier I, Chiron R et al (2014) Effectiveness of bacteriophages in the sputum of cystic fibrosis patients. Clin Microbiol Infect 20. https://doi.org/10.1111/1469-0691.12712
Sepúlveda O, Kameyama L, Guarneros G (2012) High diversity and novel species of Pseudomonas aeruginosa bacteriophages. Appl Environ Microbiol 78:4510–4515. https://doi.org/10.1128/aem.00065-12 DOI
Shiley J, Comfort K, Robinson J (2017) Immunogenicity and antimicrobial effectiveness of Pseudomonas aeruginosa specific bacteriophage in a human lung in vitro model. Appl Microbiol Biotechnol 101:7977–7985. https://doi.org/10.1007/s00253-017-8504-1 PubMed DOI
Snyder L (1995) Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents?. Mol Microbiol 15:415–420. https://doi.org/10.1111/j.1365-2958.1995.tb02255.x PubMed DOI
Subedi D, Vijay A, Kohli G et al (2018) Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Sci Rep 8:15668. https://doi.org/10.1038/s41598-018-34020-7
Sybesma W, Rohde C, Bardy P et al (2018) Silk route to the acceptance and re-implementation of bacteriophage therapy–Part II. J Antibiot 7:1–23. https://doi.org/10.3390/2Fantibiotics7020035
Sykilinda N, Bondar A, Gorshkova A et al (2014) Complete genome sequence of the novel giant Pseudomonas phage PaBG. Genome Announc 2:e00929–13. https://doi.org/10.1128/2FgenomeA.00929-13
Tagliaferri T, Jansen M, Horz H (2018) Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front Cell Infect Microbiol 9:22. https://doi.org/10.3389/2Ffcimb.2019.00022
Tang C, Deng C, Zhang Y et al (2018) Characterization and genomic analyses of Pseudomonas aeruginosa Podovirus TC6: establishment of genus Pa11virus. Front Microbiol 9:2561. https://doi.org/10.3389/fmicb.2018.02561 PubMed DOI PMC
Thiel K (2004) Old dogma, new tricks–21st century phage therapy. Nat Biotechnol 22:31–36. https://doi.org/10.1038/nbt0104-3 PubMed DOI
Torres C, Sánchez F, Vasse M et al (2014) A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PLoS ONE 9:e106628. https://doi.org/10.1371/journal.pone.0106628 DOI
Trend S, Fonceca A, Ditcham W et al (2017) The potential of phage therapy in cystic fibrosis: essential human-bacterial-phage interactions and delivery considerations for use in Pseudomonas aeruginosa-infected airways. J Cyst Fibros 16:663–670. https://doi.org/10.1016/j.jcf.2017.06.012 PubMed DOI
Trend S, Chang B, O’Dea M et al (2018) Use of a primary epithelial cell screening tool to investigate phage therapy in cystic fibrosis. Front Pharmacol 9:1330. https://doi.org/10.3389/fphar.2018.01330 PubMed DOI PMC
Uchiyama J, Suzuki M, Nishifuji K et al (2016) Analyses of short-term antagonistic evolution of Pseudomonas aeruginosa strain PAO1 and Phage KPP22 (Myoviridae Family, PB1-Like Virus Genus). Appl Environ Microbiol 82:4482–4491. https://doi.org/10.1128/aem.00090-16 PubMed DOI PMC
Verbeken G, Pirnay J, De Vos D et al (2012) Optimizing the European Regulatory Framework for Sustainable Bacteriophage Therapy in Human Medicine. Arch Immunol Ther Exp 60:161–172. https://doi.org/10.1007/s00005-012-0175-0 DOI
Verbeken G, Pirnay J, Lavigne R et al (2014) Call for a Dedicated European Legal Framework for Bacteriophage Therapy. Arch Immunol Ther Exp 62:117–129. https://doi.org/10.1007/s00005-014-0269-y DOI
Waters E, Neill D, Kaman B et al (2017) Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax 72:666–667. https://doi.org/10.1136/thoraxjnl-2016-209265 PubMed DOI
Wienhold S, Lienau J, Witzenrath M (2019) towards inhaled phage therapy in Western Europe. viruses 11:295. https://doi.org/10.3390/2Fv11030295
Wlodarczyk D, Olszak T, Arabski M et al (2015) Characterization of the newly isolated lytic bacteriophages KTN6 and KT28 And Their Efficacy Against Pseudomonas aeruginosa biofilm. PLoS ONE 10:e0127603. https://doi.org/10.1371/journal.pone.0127603 DOI
Wlodarczyk K, Vandenheuvel D, Jang H et al (2016) A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections. Sci Rep 6. https://doi.org/10.1038/srep28115
Yamaguchi K, Miyata R, Shigehisa R et al (2014) Genome analysis of Pseudomonas aeruginosa bacteriophage KPP23, belonging to the family Siphoviridae. Genome Announc 2:e00233-e314. https://doi.org/10.1128/genomea.00233-14 PubMed DOI PMC
Yang Y, Lu S, Shen W et al (2016) Characterization of the first double stranded RNA bacteriophage infecting Pseudomonas aeruginosa. Sci Rep 6. https://doi.org/10.1038/2Fsrep38795
Yang Y, Le S, Shen W et al (2018) Antibacterial activity of a lytic enzyme encoded by Pseudomonas aeruginosa double stranded RNA bacteriophage phiYY. Front Microbiol 9:1778. https://doi.org/10.3389/fmicb.2018.01778 PubMed DOI PMC
Yang Y, Shen W, Zhong Q et al (2020) Development of a bacteriophage cocktail to constrain the emergence of phage-resistant Pseudomonas aeruginosa. Front Microbiol 11:327. https://doi.org/10.3389/2Ffmicb.2020.00327
Yu S, Huang H, Hao Y et al (2018) Complete genome sequence of the myoviral bacteriophage YS35, which causes the lysis of a multidrug-resistant Pseudomonas aeruginosa strain. Genome Announc 6:e01395–17. https://doi.org/10.1128/2FgenomeA.01395-17