Spun of improvised cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-D]-Imidazole (BCHMX) in polystyrene nanofibrous membrane by electrospinning techniques
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35945603
PubMed Central
PMC9364567
DOI
10.1186/s13065-022-00853-7
PII: 10.1186/s13065-022-00853-7
Knihovny.cz E-zdroje
- Klíčová slova
- BCHMX, Electrospinning, Electrospun nanofibers, Polystyrene, Sensitivities, Thermal study,
- Publikační typ
- časopisecké články MeSH
Development of ultra-fine fiber technology and nano-sized materials are widely taking place to enhance the characteristic of different materials. In our study, a newly developed technique was used to produce improvised nano energetic fibers with the exploitation of cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5-d] imidazole (BCHMX) to spin in a polystyrene nanofiber membrane. Scanning electron microscopy (SEM) showed the synthesized nanofibrous polystyrene (PS)/BCHMX sheets with clear and continual fiber were imaged with scanning electron microscopy (SEM). Characterization of the produced nanofiber was examined by Fourier Transform Infrared (FTIR), and X-ray diffractometer (XRD). Explosive sensitivity was also evaluated by both BAM impact and friction apparatus. Thermal behavior for the synthesized PS/BCHMX fiber and the pure materials were also investigated by thermal gravimetric analysis (TGA). The results show enhancement in the fabrication of nano energetic fibers with a size of 200-460 nm. The TG confirms the high weight percentage of BCHMX which reaches 60% of the total mass. PS/BCHMX fiber was confirmed with the XRD, FTIR spectrum. Interestingly, XRD sharp peaks showed the conversion of amorphous PS via electrospinning into crystalline shape regarding the applied high voltage. The synthesized PS/BCHMX nanofiber was considered insensitive to the mechanical external stimuli; more than 100 J impact energy and > 360 N initiation force as friction stimuli. PS/BCHMX is considering a candidate tool to deal with highly sensitive explosives safely and securely for explosives detection training purposes.
Zobrazit více v PubMed
Shekh MI, Patel NN, Patel KP, Patel RM, Ray A. Nano silver-embedded electrospun nanofiber of poly (4-chloro-3-methylphenyl methacrylate): use as water sanitizer. Environ Sci Pollut Res. 2017;24:5701. doi: 10.1007/s11356-016-8254-0. PubMed DOI
Nagy ZK, Balogh A, Démuth B, Pataki H, Vigh T, Szabó B, Molnár K, Schmidt BT, Horák P, Marosi G. High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. Int J Pharm. 2015;480:137. doi: 10.1016/j.ijpharm.2015.01.025. PubMed DOI
Merritt S, Exner A, a., Lee Z, Von Recum H a. Electrospinning and Jmaging. Adv Eng Mater. 2012;14:B266. doi: 10.1002/adem.201180010. DOI
Bera B. Literature review on electrospinning process (a fascinating fiber fabrication technique) Imp J Interdiscip Res. 2016;2:972.
Tuah KA, Chin S-F, Pang S-C. Fabrication of drug-loaded starch-based nanofibers via electrospinning technique. Biointerface Res Appl Chem. 2021;11(3):10801.
Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett. 2004;58:493. doi: 10.1016/S0167-577X(03)00532-9. DOI
Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7:216. doi: 10.1088/0957-4484/7/3/009. DOI
Theron S, Zussman E, Yarin A. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer. 2004;45:2017. doi: 10.1016/j.polymer.2004.01.024. DOI
Fathi S, Saber R, Adabi M, Rasouli R, Douraghi M, Morshedi M, Farid-Majidi R. Novel competitive voltammetric aptasensor based on electrospun carbon nanofibers-gold nanoparticles modified graphite electrode for salmonella enterica serovar detection. Biointerface Res Appl Chem. 2021;11(1):8702.
Doustgani A, Ahmadi E. Evaluation of electrospinning process parameters of poly lactic-co-glycolic acid and hydroxyapatite nanocomposite nanofibrous scaffolds. J Eng Fibers Fabr. 2016;11:9.
Tan S-H, Inai R, Kotaki M, Ramakrishna S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer. 2005;46:6128. doi: 10.1016/j.polymer.2005.05.068. DOI
Katti DS, Robinson KW, Ko FK, C.T. Laurencin, Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res B Appl Biomater. 2004;70:286. doi: 10.1002/jbm.b.30041. PubMed DOI
Ajayan PM, Schadler LS, Braun PV. Nanocomposite science and technology. Hoboken: John Wiley & Sons; 2006.
Kalmer RR, Mohammadi M, Najafpour G, Golizadeh M, Haghighatnia Y, Karimi A. Fabrication of multifunctional microfibrous and nanofibrous cellulose carriers and comparison of cell adhesion and spreading potential on them. Biointerface Res Appl Chem. 2020;10(3):5387. doi: 10.33263/BRIAC0103.387391. DOI
Sun Z, Li M, Jin Z, Gong Y, An Q, Tuo X, Guo J. Starch-graft-polyacrylonitrile nanofibers by electrospinning. Int J Biol Macromol. 2018;120:2552. doi: 10.1016/j.ijbiomac.2018.09.031. PubMed DOI
A.A. Lobanova, S.V. Sysolyatin, G.V. Sakovich, A.S. Zharkov, O.A. Efimov, N.I. Popov. Process for preparation of 2,4,6,8-Tetranitro-2,4,6,8-tetraazabicyclo[3.3.0]octane by nitration of the corresponding tetrasulfonate salts with nitric acid and nitric anhydride, Russ. Patent 2445311 C1, C07D471/00, JCS Federal Res. & Prod. Center ALTAI, Biysk. 2012.
D. Klasovitý, S. Zeman. Method of preparing cis-1, 3, 4, 6-tetranitrooctahydroimidazo-[4, 5-d] imidazole (bicyclo-HMX, BCHMX), Czech Patent 302068. 2010.
Klasovitý D, Zeman S, Růžička A, Jungová M, Roháč M. cis-1, 3, 4, 6-Tetranitrooctahydroimidazo-[4, 5-d] imidazole (BCHMX), its properties and initiation reactivity. J Hazard Mater. 2009;164:954. doi: 10.1016/j.jhazmat.2008.08.106. PubMed DOI
Elbeih A, Jungová M, Zeman S, Vávra P, Akštein Z. Explosive strength and impact sensitivity of several PBXs based on attractive cyclic nitramines. Propellants Explos Pyrotech. 2012;37:329. doi: 10.1002/prep.201100020. DOI
Zeman S, Jungová M. Sensitivity and performance of energetic materials. Propellants Explos Pyrotech. 2016;41:426. doi: 10.1002/prep.201500351. DOI
Elbeih A, Zeman S, Jungova M, Vávra P, Akstein Z. Effect of different polymeric matrices on some properties of plastic bonded explosives. Propellants Explos Pyrotech. 2012;37:676. doi: 10.1002/prep.201200018. DOI
Elbeih A, Pachman J, Zeman S, Trzcinski WA, Suceska M. Study of plastic explosives based on attractive cyclic nitramines, part II. Detonation characteristics of explosives with polyfluorinated binders. Propellants Explos Pyrotech. 2013;38:238. doi: 10.1002/prep.201100073. DOI
Yan Q-L, Zeman S, Elbeih A, Zbynek A. The influence of the Semtex matrix on the thermal behavior and decomposition kinetics of cyclic nitramines. Cent Eur J Energ Mater. 2013;10:509.
Elbeih A, Pachman J, Zeman S, Vávra P, Trzciński WA, z. Akštein. Detonation characteristics of plastic explosives based on attractive nitramines with polyisobutylene and poly (methyl methacrylate) binders. J Energ Mater. 2012;30:358. doi: 10.1080/07370652.2011.585216. DOI
Elbeih A, Elshenawy T, Zeman S, Akštein Z. Application of BCHMX in shaped charges against RHA targets compared to different nitramine explosives. Cent Eur J Energ Mater. 2018;15(1):3. doi: 10.22211/cejem/81604. DOI
Ayoub HS, El-Sherif AF, Elbeih A. Hyperspectral imaging and remote trace detection of cis-1, 3, 4, 6 tetranitrooctahydroimidazo-[4, 5 d] imidazole (BCHMX) compared with traditional explosives using laser induced fluorescence. Def Technol. 2021;17(5):1609. doi: 10.1016/j.dt.2020.09.008. DOI
Hussein AK, Elbeih A, Zeman S. Thermo-analytical study of cis-1, 3, 4, 6-tetranitrooctahydroimidazo-[4, 5-d] imidazole (BCHMX) and 1, 1-diamino-2, 2-dinitroethene (FOX-7) in comparison with a plastic bonded explosive based on their mixture. J Anal Appl Pyrolysis. 2017;128:304. doi: 10.1016/j.jaap.2017.09.020. DOI
Hussein AK, Elbeih A, Zeman S. Thermal decomposition kinetics and explosive properties of a mixture based on cis-1, 3, 4, 6-tetranitrooctahydroimidazo-[4, 5-d] imidazole and 3-nitro-1, 2, 4-triazol-5-one (BCHMX/NTO) Thermochim Acta. 2017;655:292. doi: 10.1016/j.tca.2017.07.016. DOI
Hussein AK, Zeman S, Elbeih A. Thermo-analytical study of glycidyl azide polymer and its effect on different cyclic nitramines. Thermochim Acta. 2018;660:110. doi: 10.1016/j.tca.2018.01.003. DOI
Hussein AK, Elbeih A, Zeman S. Thermo-analytical study of a melt cast composition based on cis-1, 3, 4, 6-tetranitrooctahydroimidazo-[4, 5 d] imidazole (BCHMX)/trinitrotoluene (TNT) compared with traditional compositions. Thermochim Acta. 2018;666:91. doi: 10.1016/j.tca.2018.06.006. DOI
Abd-Elghany M, Klapötke TM, Elbeih A. Investigation of 2, 2, 2-trinitroethyl-nitrocarbamate as a high energy dense oxidizer and its mixture with nitrocellulose (thermal behavior and decomposition kinetics) J Anal Appl Pyrol. 2017;128:397. doi: 10.1016/j.jaap.2017.09.010. DOI
Abd-Elghany M, Elbeih A, Klapötke TM. Thermo-analytical study of 2, 2, 2-trinitroethyl-formate as a new oxidizer and its propellant based on a GAP matrix in comparison with ammonium dinitramide. J Anal Appl Pyrol. 2018;133:30. doi: 10.1016/j.jaap.2018.05.004. DOI
Abd-Elghany M, Klapötke TK, Elbeih A. Thermal behavior and decomposition kinetics of bis(2,2,2-trinitroethyl)-oxalate as a high energy dense oxidizer and its mixture with nitrocellulose. Propellants Explos Pyrotech. 2017;42(12):1373. doi: 10.1002/prep.201700179. DOI
Elbeih A, Abd-Elghany M, Klapötke TK. Kinetic parameters of PBX based on Cis-1, 3, 4, 6-tetranitroocta-hydroimidazo-[4, 5-d] imidazole obtained by isoconversional methods using different thermal analysis techniques. Propellants Explos Pyrotech. 2017;42(5):468. doi: 10.1002/prep.201700032. DOI
Liu Z, Li Y, Pérez E, Jiang Q, Chen Q, Jiao Y, Huang Y, Yang Y, Zhao Y. Polystyrene nanoplastic induces oxidative stress, immune defense, and glycometabolism change in daphnia pulex: application of transcriptome profiling in risk assessment of nanoplastics. J Hazard Mater. 2021;402:123778. doi: 10.1016/j.jhazmat.2020.123778. PubMed DOI
Suceska M. Testing methods of explosives. Heidelberg: Springer; 1995.
Šelešovský J, Pachmáň J. Probit analysis-a promising tool for evaluation of explosive’s sensitivity. Cent Eur J Energ Mater. 2010;7:269.
Uyar T, Besenbacher F. Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. Polymer. 2008;49:5336. doi: 10.1016/j.polymer.2008.09.025. DOI
Oliveira JE, Mattoso LH, Orts WJ, Medeiros ES. Structural and morphological characterization of micro and nanofibers produced by electrospinning and solution blow spinning: a comparative study. Adv Mater Sci Eng. 2013;2013:1.
Rezeki YA, Hapidin DA, Rachmawati H, Munir MM, Khairurrijal K. Formation of electrosprayed composite nanoparticles from polyvinylpyrrolidone/mangosteen pericarp extract. Adv Powder Technol. 2020;31:1811. doi: 10.1016/j.apt.2020.02.016. DOI
Elbeih A, Zeman S, Jungova M, Akstein Z. Effect of different polymeric matrices on the sensitivity and performance of interesting cyclic nitramines. Cent Eur J Energ Mater. 2012;9:131.
Hussein AK, Elbeih A, Zeman S. The effect of glycidyl azide polymer on the stability and explosive properties of different interesting nitramines. RSC Adv. 2018;8:17272. doi: 10.1039/C8RA02994F. PubMed DOI PMC
Elbeih A, Mokhtar Mohamed M, Wafy T. Sensitivity and detonation characteristics of selected nitramines bonded by Sylgard binder. Propellants Explos Pyrotech. 2016;41:1044. doi: 10.1002/prep.201600015. DOI
Elbeih S. Zeman, Characteristics of melt cast compositions based on cis-1, 3, 4, 6-tetranitrooctahydroimidazo-[4, 5 d] imidazole (BCHMX)/TNT. Cent Eur J Energ Mater. 2014;11:501.