Proteomic insight into the interaction of Paenibacillus larvae with honey bee larvae before capping collected from an American foulbrood outbreak: Pathogen proteins within the host, lysis signatures and interaction markers

. 2023 Jan ; 23 (1) : e2200146. [epub] 20221103

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35946602

American foulbrood (AFB) is a devastating disease of honey bees. There remains a gap in the understanding of the interactions between the causative agent and host, so we used shotgun proteomics to gain new insights. Nano-LC-MS/MS analysis preceded visual description and Paenibacillus larvae identification in the same individual sample. A further critical part of our methodology was that larvae before capping were used as the model stage. The identification of the virulence factors SplA, PlCBP49, enolase, and DnaK in all P. larvae-positive samples was consistent with previous studies. Furthermore, the results were consistent with the array of virulence factors identified in an in vitro study of P. larvae exoprotein fractions. Although an S-layer protein and a putative bacteriocin were highlighted as important, the microbial collagenase ColA and InhA were not found in our samples. The most important virulence factor identified was isoform of neutral metalloproteinase (UniProt: V9WB82), a major protein marker responsible for the shift in the PCA biplot. This protein is associated with larval decay and together with other virulence factors (bacteriocin) can play a key role in protection against secondary invaders. Overall, this study provides new knowledge on host-pathogen interactions and a new methodical approach to study the disease.

Zobrazit více v PubMed

Mill, A. C., Rushton, S. P., Shirley, M. D. F., Smith, G. C., Mason, P., Brown, M. A., & Budge, G. E. (2014). Clustering, persistence and control of a pollinator brood disease: Epidemiology of American foulbrood. Environmental Microbiology, 16, 3753-3763.

Ebeling, J., Knispel, H., Hertlein, G., Funfhaus, A., & Genersch, E. (2016). Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae. Applied Microbiology and Biotechnology, 100, 7387-7395.

Forsgren, E., Locke, B., Sircoulomb, F., & Schafer, M. O. (2018). Bacterial diseases in honeybees. Current Clinical Microbiology Reports, 5, 18-25.

OIE. (2021). Chapter 9.2. Infection of honey bees with Paenibacillus larvae (American foulbrood), in: OIE (Ed.), OIE terrestrial animal health code, Vol. 2, World Organisation for Animal Health (OIE). https://web.archive.org/web/20210117120413/https://www.oie.int/index.php?id=169&L=0&htmfile=chapitre_paenibacillus_larvae.htm (Accessed date: 12 October 2021)

European Commission. (2018). Commission Implementing Regulation (EU) 2018/1882 of 3 December 2018 on the application of certain disease prevention and control rules to categories of listed diseases and establishing a list of species and groups of species posing a considerable risk for the spread of those listed diseases. Official Journal of the European Union, OJ L, 308, 21-29. Document 32018R1882. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R1882&qid=1657646760928 (Accessed date: 12 July 2022)

Genersch, E. (2010). American foulbrood in honeybees and its causative agent, Paenibacillus larvae. Journal of Invertebrate Pathology, 103, S10-S19.

Evans, J. D. (2003). Diverse origins of tetracycline resistance in the honey bee bacterial pathogen Paenibacillus larvae. Journal of Invertebrate Pathology, 83, 46-50.

Jonczyk-Matysiak, E., Popiela, E., Owczarek, B., Hodyra-Stefaniak, K., Switala-Jelen, K., Lodej, N., Kula, D., Neuberg, J., Migdal, P., Baginska, N., Orwat, F., Weber-Dabrowska, B., Roman, A., & Gorski, A. (2020). Phages in therapy and prophylaxis of American foulbrood-Recent implications from practical applications. Frontiers in Microbiology, 11, 1913.

Bonerba, E., Panseri, S., Arioli, F., Nobile, M., Terio, V., Di Cesare, F., Tantillo, G., & Chiesa, L. M. (2021). Determination of antibiotic residues in honey in relation to different potential sources and relevance for food inspection. Food Chemistry, 334, 127575.

Zabrodski, M. W., DeBruyne, J. E., Wilson, G., Moshynskyy, I., Sharafi, M., Wood, S. C., Kozii, I. V., Thebeau, J., Klein, C. D., de Mattos, I. M., Sobchishin, L., Epp, T., Ruzzini, A. C., & Simko, E. (2022). Comparison of individual hive and apiary-level sample types for spores of Paenibacillus larvae in Saskatchewan honey bee operations. PLoS ONE, 17, e0263602.

Locke, B., Low, M., & Forsgren, E. (2019). An integrated management strategy to prevent outbreaks and eliminate infection pressure of American foulbrood disease in a commercial beekeeping operation. Preventive Veterinary Medicine, 167, 48-52.

Tarr, H. L. A. (1937). Studies of American foul brood of bees. I. The relative pathogenicity of vegetative cells and endospores of Bacillus larvae for the brood of the bee. Annals of Applied Biology, 24, 377-384.

Hasemann, L. (1961). How long can spores of American foulbrood live? American Bee Journal, 101, 298-299.

Shimanuki, H., & Knox, D. A. (1994). Susceptibility of Bacillus larvae to terramycin. American Bee Journal, 134, 125-126.

Hoage, T. R., & Rothenbuhler, W. C. (1966). Larval honey bee response to various doses of Bacillus larvae spores. Journal of Economic Entomology, 59, 42-45.

de Graaf, D. C., Alippi, A. M., Brown, M., Evans, J. D., Feldlaufer, M., Gregorc, A., Hornitzky, M., Pernal, S. F., Schuch, D. M. T., Titera, D., Tomkies, V., & Ritter, W. (2006). Diagnosis of American foulbrood in honey bees: A synthesis and proposed analytical protocols. Letters in Applied Microbiology, 43, 583-590.

Govan, V. A., Allsopp, M. H., & Davison, S. (1999). A PCR detection method for rapid identification of Paenibacillus larvae. Applied and Environmental Microbiology, 65, 2243-2245.

de Graaf, D. C., Alippi, A. M., Antunez, K., Aronstein, K. A., Budge, G., De Koker, D., De Smet, L., Dingman, D. W., Evans, J. D., Foster, L. J., Funfhaus, A., Garcia-Gonzalez, E., Gregorc, A., Human, H., Murray, K. D., Nguyen, B. K., Poppinga, L., Spivak, M., vanEngelsdorp, D., … Genersch, E. (2013). Standard methods for American foulbrood research. Journal of Apicultural Research, 52, 52.1.11.

Schafer, M. O., Genersch, E., Funfhaus, A., Poppinga, L., Formella, N., Bettin, B., & Karger, A. (2014). Rapid identification of differentially virulent genotypes of Paenibacillus larvae, the causative organism of American foulbrood of honey bees, by whole cell MALDI-TOF mass spectrometry. Veterinary Microbiology, 170, 291-297.

Tyers, M., & Mann, M. (2003). From genomics to proteomics. Nature, 422, 193-197.

Reeves, G. A., Talavera, D., & Thornton, J. M. (2009). Genome and proteome annotation: Organization, interpretation and integration. Journal of the Royal Society Interface, 6, 129-147.

The Honeybee Genome Sequencing Consortium. (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443, 931-949.

Qin, X., Evans, J. D., Aronstein, K. A., Murray, K. D., & Weinstock, G. M. (2006). Genome sequences of the honey bee pathogens Paenibacillus larvae and Ascosphaera apis. Insect Molecular Biology, 15, 715-718.

Chan, Q. W. T., Cornman, R. S., Birol, I., Liao, N. Y., Chan, S. K., Docking, T. R., Jackman, S. D., Taylor, G. A., Jones, S. J. M., de Graaf, D. C., Evans, J. D., & Foster, L. J. (2011). Updated genome assembly and annotation of Paenibacillus larvae, the agent of American foulbrood disease of honey bees. BMC Genomics, 12, 450.

Djukic, M., Brzuszkiewicz, E., Funfhaus, A., Voss, J., Gollnow, K., Poppinga, L., Liesegang, H., Garcia-Gonzalez, E., Genersch, E., & Daniel, R. (2014). How to kill the honey bee larva: Genomic potential and virulence mechanisms of Paenibacillus larvae. PLoS ONE, 9, e90914.

Dingman, D. W. (2017). Four complete Paenibacillus larvae genome sequences. Genome Announcements, 5, e00407-00417.

Beims, H., Bunk, B., Erler, S., Mohr, K. I., Sproer, C., Pradella, S., Gunther, G., Rohde, M., von der Ohe, W., & Steinert, M. (2020). Discovery of Paenibacillus larvae ERIC V: Phenotypic and genomic comparison to genotypes ERIC I-IV reveal different inventories of virulence factors which correlate with epidemiological prevalences of American foulbrood. International Journal of Medical Microbiology, 310, 151394.

Funfhaus, A., & Genersch, E. (2012). Proteome analysis of Paenibacillus larvae reveals the existence of a putative S-layer protein. Environmental Microbiology Reports, 4, 194-202.

Poppinga, L., Janesch, B., Funfhaus, A., Sekot, G., Garcia-Gonzalez, E., Hertlein, G., Hedtke, K., Schaffer, C., & Genersch, E. (2012). Identification and functional analysis of the S-layer protein SplA of Paenibacillus larvae, the causative agent of American foulbrood of honey bees. PLoS Pathogens, 8, e1002716.

Garcia-Gonzalez, E., Poppinga, L., Funfhaus, A., Hertlein, G., Hedtke, K., Jakubowska, A., & Genersch, E. (2014). Paenibacillus larvae chitin-degrading protein PlCBP49 is a key virulence factor in American foulbrood of honey bees. PLoS Pathogens, 10, e1004284.

Funfhaus, A., Poppinga, L., & Genersch, E. (2013). Identification and characterization of two novel toxins expressed by the lethal honey bee pathogen Paenibacillus larvae, the causative agent of American foulbrood. Environmental Microbiology, 15, 2951-2965.

Ebeling, J., Funfhaus, A., Knispel, H., Krska, D., Ravulapalli, R., Heney, K. A., Lugo, M. R., Merrill, A. R., & Genersch, E. (2017). Characterization of the toxin Plx2A, a RhoA-targeting ADP-ribosyltransferase produced by the honey bee pathogen Paenibacillus larvae. Environmental Microbiology, 19, 5100-5116.

Krska, D., Ravulapalli, R., Fieldhouse, R. J., Lugo, M. R., & Merrill, A. R. (2015). C3larvin toxin, an ADP-ribosyltransferase from Paenibacillus larvae. Journal of Biological Chemistry, 290, 1639-1653.

Erban, T., Zitek, J., Bodrinova, M., Talacko, P., Bartos, M., & Hrabak, J. (2019). Comprehensive proteomic analysis of exoproteins expressed by ERIC I, II, III and IV Paenibacillus larvae genotypes reveals a wide range of virulence factors. Virulence, 10, 363-375.

Genersch, E., Forsgren, E., Pentikainen, J., Ashiralieva, A., Rauch, S., Kilwinski, J., & Fries, I. (2006). Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. International Journal of Systematic and Evolutionary Microbiology, 56, 501-511.

Hughes, C. S., Moggridge, S., Muller, T., Sorensen, P. H., Morin, G. B., & Krijgsveld, J. (2019). Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nature Protocols, 14, 68-85.

Rappsilber, J., Mann, M., & Ishihama, Y. (2007). Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature Protocols, 2, 1896-1906.

Hebert, A. S., Richards, A. L., Bailey, D. J., Ulbrich, A., Coughlin, E. E., Westphall, M. S., & Coon, J. J. (2014). The one hour yeast proteome. Molecular & Cellular Proteomics, 13, 339-347.

Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N., & Mann, M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular & Cellular Proteomics, 13, 2513-2526.

Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., & Mann, M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. Journal of Proteome Research, 10, 1794-1805.

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13, 731-740.

R Development Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org (Accessed date: 12 October 2021)

Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., & Zemla, J. (2017). ‘Corrplot’: Visualization of a correlation matrix. CRAN - The Comprehensive R Archive Network. https://cran.r-project.org/web/packages/corrplot/ (Accessed date: 12 October 2021)

Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W. H. A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., & Venables, B. (2016). gplots: Various R programming tools for plotting data. CRAN - The Comprehensive R Archive Network. https://cran.r-project.org/web/packages/gplots/index.html (Accessed date: 12 October 2021)

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410.

Blum, M., Chang, H.-Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A., Nuka, G., Paysan-Lafosse, T., Qureshi, M., Raj, S., Richardson, L., Salazar, G. A., Williams, L., Bork, P., Bridge, A., Gough, J., Haft, D. H., Letunic, I., Marchler-Bauer, A., … Finn, R. D. (2021). The InterPro protein families and domains database: 20 years on. Nucleic Acids Research, 49, D344-D354.

Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Heger, A., Hetherington, K., Holm, L., Mistry, J., Sonnhammer, E. L., Tate, J., & Punta, M. (2014). Pfam: The protein families database. Nucleic Acids Research, 42, D222-D230.

Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48, D265-D268.

Erban, T., Harant, K., Kamler, M., Markovic, M., & Titera, D. (2016). Detailed proteome mapping of newly emerged honeybee worker hemolymph and comparison with the red-eye pupal stage. Apidologie, 47, 805-817.

Erban, T., Sopko, B., Kadlikova, K., Talacko, P., & Harant, K. (2019). Varroa destructor parasitism has a greater effect on proteome changes than the deformed wing virus and activates TGF-beta signaling pathways. Scientific Reports, 9, 9400.

Bailey, L. (1963). Infectious diseases of the honeybee. Land Books.

Ratnieks, F. L. W. (1992). American foulbrood: The spread and control of an important disease of the honey bee. Bee World, 73, 177-191.

Hansen, H., & Brodsgaard, C. J. (1999). American foulbrood: A review of its biology, diagnosis and control. Bee World, 80, 5-23.

Spivak, M., & Reuter, G. S. (2001). Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie, 32, 555-565.

Woodrow, A. W. (1942). Susceptibility of honeybee larvae to individual inoculations with spores of Bacillus larvae. Journal of Economic Entomology, 35, 892-895.

Brodsgaard, C. J., Ritter, W., & Hansen, H. (1998). Response of in vitro reared honey bee larvae to various doses of Paenibacillus larvae larvae spores. Apidologie, 29, 569-578.

Riessberger-Galle, U., von der Ohe, W., & Crailsheim, K. (2001). Adult honeybee's resistance against Paenibacillus larvae larvae, the causative agent of the American foulbrood. Journal of Invertebrate Pathology, 77, 231-236.

Crailsheim, K., & Riessberger-Galle, U. (2001). Honey bee age-dependent resistance against American foulbrood. Apidologie, 32, 91-103.

Hansen, H., & Brodsgaard, C. J. (1999). Foulbrood diseases. Apiacta, 34, 69-83.

Erban, T., Ledvinka, O., Kamler, M., Nesvorna, M., Hortova, B., Tyl, J., Titera, D., Markovic, M., & Hubert, J. (2017). Honeybee (Apis mellifera)-associated bacterial community affected by American foulbrood: Detection of Paenibacillus larvae via microbiome analysis. Scientific Reports, 7, 5084.

Antunez, K., Anido, M., Arredondo, D., Evans, J. D., & Zunino, P. (2011). Paenibacillus larvae enolase as a virulence factor in honeybee larvae infection. Veterinary Microbiology, 147, 83-89.

Descamps, T., De Smet, L., De Vos, P., & de Graaf, D. C. (2018). Unbiased random mutagenesis contributes to a better understanding of the virulent behaviour of Paenibacillus larvae. Journal of Applied Microbiology, 124, 28-41.

Martinez, B., Fernandez, M., Suarez, J. E., & Rodriguez, A. (1999). Synthesis of lactococcin 972, a bacteriocin produced by Lactococcus lactis IPLA 972, depends on the expression of a plasmid-encoded bicistronic operon. Microbiology, 145, 3155-3161.

Bailey, L. (1983). Melissococcus pluton, the cause of European foulbrood of honey bees (Apis spp.). Journal of Applied Bacteriology, 55, 65-69.

Erler, S., Lewkowski, O., Poehlein, A., & Forsgren, E. (2017). The curious case of Achromobacter eurydice, a Gram-variable pleomorphic bacterium associated with European foulbrood disease in honeybees. Microbial Ecology, 75, 1-6.

Erban, T., Ledvinka, O., Kamler, M., Hortova, B., Nesvorna, M., Tyl, J., & Hubert, J. (2017). Bacterial community associated with worker honeybees (Apis mellifera) affected by European foulbrood. PeerJ, 5, e3816.

Chen, R., Guttenplan, S. B., Blair, K. M., & Kearns, D. B. (2009). Role of the sigmaD-dependent autolysins in Bacillus subtilis population heterogeneity. Journal of Bacteriology, 191, 5775-5784.

Antunez, K., Arredondo, D., Anido, M., & Zunino, P. (2011). Metalloprotease production by Paenibacillus larvae during the infection of honeybee larvae. Microbiology, 157, 1474-1480.

Holst, E. C., & Sturtevant, A. P. (1940). Relation of proteolytic enzymes to phase of life cycle of Bacillus larvae, and two new culture media for this organism. Journal of Bacteriology, 40, 723-731.

Holst, E. C. (1946). A simple field test for American foulbrood. American Bee Journal, 86, 14-34.

Bailey, L., & Ball, B. V. (1991). Honey bee pathology, 2nd edn. Academic Press.

Shimanuki, H., & Knox, D. A. (1988). Improved method for the detection of Bacillus larvae spores in honey. American Bee Journal, 128, 353-354.

Dancer, B. N., & Chantawannakul, P. (1997). The proteases of American foulbrood scales. Journal of Invertebrate Pathology, 70, 79-87.

Antunez, K., Anido, M., Schlapp, G., Evans, J. D., & Zunino, P. (2009). Characterization of secreted proteases of Paenibacillus larvae, potential virulence factors involved in honeybee larval infection. Journal of Invertebrate Pathology, 102, 129-132.

Hrabak, J., & Martinek, K. (2007). Screening of secreted proteases of Paenibacillus larvae by using substrate-SDS-polyacrylamide gel electrophoresis. Journal of Apicultural Research, 46, 160-164.

Felicioli, A., Turchi, B., Fratini, F., Giusti, M., Nuvoloni, R., Dani, F. R., & Sagona, S. (2018). Proteinase pattern of honeybee prepupae from healthy and American foulbrood infected bees investigated by zymography. Electrophoresis, 39, 2160-2167.

Bajaj-Elliott, M. (2003). Trypsin and host defence: A new role for an old enzyme. Gut, 52, 166-167.

Zou, Z., Lopez, D. L., Kanost, M. R., Evans, J. D., & Jiang, H. (2006). Comparative analysis of serine protease-related genes in the honey bee genome: Possible involvement in embryonic development and innate immunity. Insect Molecular Biology, 15, 603-614.

Lu, A., Zhang, Q., Zhang, J., Yang, B., Wu, K., Xie, W., Luan, Y.-X., & Ling, E. (2014). Insect prophenoloxidase: The view beyond immunity. Frontiers in Physiology, 5, 252.

Coudroy, G., Gburek, J., Kozyraki, R., Madsen, M., Trugnan, G., Moestrup, S. K., Verroust, P. J., & Maurice, M. (2005). Contribution of cubilin and amnionless to processing and membrane targeting of cubilin-amnionless complex. Journal of the American Society of Nephrology, 16, 2330-2337.

Larsen, C., Etzerodt, A., Madsen, M., Skjodt, K., Moestrup, S. K., & Andersen, C. B. F. (2018). Structural assembly of the megadalton-sized receptor for intestinal vitamin B12 uptake and kidney protein reabsorption. Nature Communications, 9, 5204.

Bartucci, R., Salvati, A., Olinga, P., & Boersma, Y. L. (2019). Vanin 1: Its physiological function and role in diseases. International Journal of Molecular Sciences, 20, 3891.

Paik, D., Monahan, A., Caffrey, D. R., Elling, R., Goldman, W. E., & Silverman, N. (2017). SLC46 family transporters facilitate cytosolic innate immune recognition of monomeric peptidoglycans. Journal of Immunology, 199, 263-270.

Alippi, A. (2018). Chapter 3.2.2.: American foulbrood of honey bees (infection of honey bees with Paenibacillus larvae). Version adopted in May 2016). In: OIE (Ed.) Manual of diagnostic tests and vaccines for terrestrial animals 2018. World Organisation for Animal Health (OIE), (pp. 719-735). https://www.oie.int/fileadmin/Home/fr/Health_standards/tahm/3.02.02_AMERICAN_FOULBROOD.pdf (Accessed date: 12 October 2021)

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...