Anthropogenic habitat modification alters calling phenology of frogs

. 2022 Nov ; 28 (21) : 6194-6208. [epub] 20220810

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35949049

Anthropogenic habitat modification significantly challenges biodiversity. With its intensification, understanding species' capacity to adapt is critical for conservation planning. However, little is known about whether and how different species are responding, particularly among frogs. We used a continental-scale citizen science dataset of >226,000 audio recordings of 42 Australian frog species to investigate how calling-a proxy for breeding-phenology varied along an anthropogenic modification gradient. Calling started earlier and breeding seasons lengthened with increasing modification intensity. Breeding seasons averaged 22.9 ± 8.25 days (standard error) longer in the most modified compared to the least modified regions, suggesting that frog breeding activity was sensitive to habitat modification. We also examined whether calls varied along a modification gradient by analysing the temporal and spectral properties of advertisement calls from a subset of 441 audio recordings of three broadly distributed frog species. There was no appreciable effect of anthropogenic habitat modification on any of the measured call variables, although there was high variability. With continued habitat modification, species may shift towards earlier and longer breeding seasons, with largely unknown ecological consequences in terms of proximate and ultimate fitness.

Zobrazit více v PubMed

Alberti, M. (2015). Eco‐evolutionary dynamics in an urbanizing planet. Trends in Ecology & Evolution, 30(2), 114–126. 10.1016/j.tree.2014.11.007 PubMed DOI

Altwegg, R. , & Reyer, H. U. (2003). Patterns of natural selection on size at metamorphosis in water frogs. Evolution, 57(4), 872–882. 10.1111/j.0014-3820.2003.tb00298.x PubMed DOI

Arietta, A. Z. A. , Freidenburg, L. K. , Urban, M. C. , Rodrigues, S. B. , Rubinstein, A. , & Skelly, D. K. (2020). Phenological delay despite warming in wood frog Rana sylvatica reproductive timing: A 20‐year study. Ecography, 43(12), 1791–1800. 10.1111/ecog.05297 DOI

Baker, B. , & Richardson, J. (2006). The effect of artificial light on male breeding‐season behaviour in green frogs, Rana clamitans melanota . Canadian Journal of Zoology, 84(10), 1528–1532. 10.1139/z06-142 DOI

Bates, D. , Maechler, M. , Bolker, B. , & Walker, S. (2015). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67(1), 1–48. 10.18637/jss.v067.i01 DOI

Beck, N. R. , & Heinsohn, R. (2006). Group composition and reproductive success of cooperatively breeding white‐winged choughs (Corcorax melanorhamphos) in urban and non‐urban habitat. Austral Ecology, 31(5), 588–596. 10.1111/j.1442-9993.2006.01589.x DOI

Bee, M. A. , Perrill, S. A. , & Owen, P. C. (2000). Male green frogs lower the pitch of acoustic signals in defense of territories: A possible dishonest signal of size? Behavioral Ecology, 11(2), 169–177. 10.1093/beheco/11.2.169 DOI

Bee, M. A. , & Swanson, E. M. (2007). Auditory masking of anuran advertisement calls by road traffic noise. Animal Behaviour, 74(6), 1765–1776. 10.1016/j.anbehav.2007.03.019 DOI

Belitz, M. W. , Barve, V. , Doby, J. R. , Hantak, M. M. , Larsen, E. A. , Li, D. , Oswald, J. A. , Sewnath, N. , Walters, M. , Barve, N. , Earl, K. , Gardner, N. , Guralnick, R. P. , & Stucky, B. J. (2021). Climate drivers of adult insect activity are conditioned by life history traits. Ecology Letters, 24(12), 2687–2699. 10.1111/ele.13889 PubMed DOI

Belitz, M. W. , Campbell, C. J. , & Li, D. (2020). Phenesse: Estimate phenological metrics using presence‐only data. R package version 0.1.2. https://CRAN.R‐project.org/package=phenesse

Belitz, M. W. , Larsen, E. A. , Ries, L. , & Guralnick, R. P. (2020). The accuracy of phenology estimators for use with sparsely sampled presence‐only observations. Methods in Ecology and Evolution, 11(10), 1273–1285. 10.1111/2041-210X.13448 DOI

Bosch, J. , & De la Riva, I. (2004). Are frog calls modulated by the environment? An analysis with anuran species from Bolivia. Canadian Journal of Zoology, 82(6), 880–888. 10.1139/z04-060 DOI

Both, C. , Bouwhuis, S. , Lessells, C. , & Visser, M. E. (2006). Climate change and population declines in a long‐distance migratory bird. Nature, 441(7089), 81–83. 10.1038/nature04539 PubMed DOI

Brumm, H. (2004). The impact of environmental noise on song amplitude in a territorial bird. Journal of Animal Ecology, 73(3), 434–440. 10.1111/j.0021-8790.2004.00814.x DOI

Byrne, P. G. (2008). Strategic male calling behavior in an Australian terrestrial toadlet (Pseudophryne bibronii). Copeia, 2008(1), 57–63. 10.1643/CE-05-294 DOI

Callaghan, C. T. , Liu, G. , Mitchell, B. A. , Poore, A. G. , & Rowley, J. J. L. (2021). Urbanization negatively impacts frog diversity at continental, regional, and local scales. Basic and Applied Ecology, 54, 64–74. 10.1016/j.baae.2021.04.003 DOI

Chick, L. D. , Strickler, S. A. , Perez, A. , Martin, R. A. , & Diamond, S. E. (2019). Urban heat islands advance the timing of reproduction in a social insect. Journal of Thermal Biology, 80, 119–125. 10.1016/j.jtherbio.2019.01.004 PubMed DOI

Chivers, D. P. , Kiesecker, J. M. , Marco, A. , Devito, J. , Anderson, M. T. , & Blaustein, A. R. (2001). Predator‐induced life history changes in amphibians: Egg predation induces hatching. Oikos, 92(1), 135–142. 10.1034/j.1600-0706.2001.920116.x DOI

Cunnington, G. M. , & Fahrig, L. (2010). Plasticity in the vocalizations of anurans in response to traffic noise. Acta Oecologica, 36(5), 463–470. 10.1016/j.actao.2010.06.002 DOI

Dawson, R. D. (2008). Timing of breeding and environmental factors as determinants of reproductive performance of tree swallows. Canadian Journal of Zoology, 86(8), 843–850. 10.1139/Z08-065 DOI

Deviche, P. , & Davies, S. (2014). Reproductive phenology of urban birds: Environmental cues and mechanisms. In Gil D. & Brumm H. (Eds.), Avian urban ecology: Behavioural and physiological adaptations (pp. 98–115). Oxford University Press.

Diamond, S. E. , Cayton, H. , Wepprich, T. , Jenkins, C. N. , Dunn, R. R. , Haddad, N. M. , & Ries, L. (2014). Unexpected phenological responses of butterflies to the interaction of urbanization and geographic temperature. Ecology, 95(9), 2613–2621. 10.1890/13-1848.1 DOI

Dirzo, R. , Young, H. S. , Galetti, M. , Ceballos, G. , Isaac, N. J. B. , & Collen, B. (2014). Defaunation in the Anthropocene. Science, 345(6195), 401–406. 10.1126/science.1251817 PubMed DOI

Ditchkoff, S. S. , Saalfeld, S. T. , & Gibson, C. J. (2006). Animal behavior in urban ecosystems: Modifications due to human‐induced stress. Urban Ecosystem, 9(1), 5–12. 10.1007/s11252-006-3262-3 DOI

Dominoni, D. M. , & Partecke, J. (2015). Does light pollution alter daylength? A test using light loggers on free‐ranging European blackbirds (Turdus merula). Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1667), 20140118. 10.1098/rstb.2014.0118 PubMed DOI PMC

Elvidge, C. D. , Baugh, K. , Zhizhin, M. , Hsu, F. C. , & Ghosh, T. (2017). VIIRS night‐time lights. International Journal of Remote Sensing, 38(21), 5860–5879. 10.1080/01431161.2017.1342050 DOI

Fisogni, A. , Hautekèete, N. , Piquot, Y. , Brun, M. , Vanappelghem, C. , Michez, D. , & Massol, F. (2020). Urbanization drives an early spring for plants but not for pollinators. Oikos, 129(11), 1681–1691. 10.1111/oik.07274 DOI

Fleischer, A. L., Jr. , Bowman, R. , & Woolfenden, G. E. (2003). Variation in foraging behavior, diet, and time of breeding of Florida scrub‐jays in suburban and wildland habitats. The Condor, 105(3), 515–527. 10.1093/condor/105.3.515 DOI

Forsburg, Z. R. , Guzman, A. , & Gabor, C. R. (2021). Artificial light at night (ALAN) affects the stress physiology but not the behavior or growth of Rana berlandieri and Bufo valliceps. Environmental Pollution, 277, 116775. 10.1016/j.envpol.2021.116775 PubMed DOI

Francis, C. D. , & Barber, J. R. (2013). A framework for understanding noise impacts on wildlife: An urgent conservation priority. Frontiers in Ecology and the Environment, 11(6), 305–313. 10.1890/120183 DOI

Fuller, R. A. , Warren, P. H. , & Gaston, K. J. (2007). Daytime noise predicts nocturnal singing in urban robins. Biology Letters, 3(4), 368–370. 10.1098/rsbl.2007.0134 PubMed DOI PMC

Gibbs, J. P. , & Breisch, A. R. (2001). Climate warming and calling phenology of frogs near Ithaca, New York, 1900–1999. Conservation Biology, 15(4), 1175–1178. 10.1046/j.1523-1739.2001.0150041175.x DOI

Gorelick, N. , Hancher, M. , Dixon, M. , Ilyushchenko, S. , Thau, D. , & Moore, R. (2017). Google earth engine: Planetary‐scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. 10.1016/j.rse.2017.06.031 DOI

Gorissen, L. , Snoeijs, T. , Duyse, E. V. , & Eens, M. (2005). Heavy metal pollution affects dawn singing behaviour in a small passerine bird. Oecologia, 145(3), 504–509. 10.1007/s00442-005-0091-7 PubMed DOI

Grant, R. A. , Chadwick, E. A. , & Halliday, T. (2009). The lunar cycle: A cue for amphibian reproductive phenology? Animal Behaviour, 78(2), 349–357. 10.1016/j.anbehav.2009.05.007 DOI

Halfwerk, W. , Lea, A. M. , Guerra, M. A. , Page, R. A. , & Ryan, M. J. (2015). Vocal responses to noise reveal the presence of the Lombard effect in a frog. Behavioral Ecology, 27(2), 669–676. 10.1093/beheco/arv204 DOI

Hall, A. S. (2016). Acute artificial light diminishes Central Texas anuran calling behavior. The American Midland Naturalist, 175(2), 183–193. 10.1674/0003-0031-175.2.183 DOI

Halupka, L. , Borowiec, M. , Neubauer, G. , & Halupka, K. (2021). Fitness consequences of longer breeding seasons of a migratory passerine under changing climatic conditions. Journal of Animal Ecology, 90(7), 1655–1665. 10.1111/1365-2656.13481 PubMed DOI PMC

Hamer, A. J. , & McDonnell, M. J. (2008). Amphibian ecology and conservation in the urbanising world: A review. Biological Conservation, 141(10), 2432–2449. 10.1016/j.biocon.2008.07.020 DOI

Hart, A. G. , Hesselberg, T. , Nesbit, R. , & Goodenough, A. E. (2018). The spatial distribution and environmental triggers of ant mating flights: Using citizen‐science data to reveal national patterns. Ecography, 41(6), 877–888. 10.1111/ecog.03140 DOI

Hayes, T. B. , Falso, P. , Gallipeau, S. , & Stice, M. (2010). The cause of global amphibian declines: A developmental endocrinologist's perspective. Journal of Experimental Biology, 213(6), 921–933. 10.1242/jeb.040865 PubMed DOI PMC

Hegland, S. J. , Nielsen, A. , Lázaro, A. , Bjerknes, A. L. , & Totland, Ø. (2009). How does climate warming affect plant‐pollinator interactions? Ecology Letters, 12(2), 184–195. 10.1111/j.1461-0248.2008.01269.x PubMed DOI

Hoffmann, E. P. , & Mitchell, N. J. (2021). Breeding phenology of a terrestrial‐breeding frog is associated with soil water potential: Implications for conservation in a changing climate. Austral Ecology, 47, 353–364. 10.1111/aec.13122 DOI

Hoffmann, M. , Hilton‐Taylor, C. , Angulo, A. , Böhm, M. , Brooks, T. M. , Butchart, S. H. M. , Carpenter, K. E. , Chanson, J. , Collen, B. , Cox, N. A. , Darwall, W. R. T. , Dulvy, N. K. , Harrison, L. R. , Katariya, V. , Pollock, C. M. , Quader, S. , Richman, N. I. , Rodrigues, A. S. L. , Tognelli, M. F. , … Stuart, S. N. (2010). The impact of conservation on the status of the world's vertebrates. Science, 330(6010), 1503–1509. 10.1126/science.1194442 PubMed DOI

Hoskin, C. , & Goosem, M. (2010). Road impacts on abundance, call traits, and body size of rainforest frogs in Northeast Australia. Ecology and Society, 15(3), 15. 10.5751/ES-03272-150315 DOI

Imhoff, M. L. , Zhang, P. , Wolfe, R. E. , & Bounoua, L. (2010). Remote sensing of the urban heat Island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3), 504–513. 10.1016/j.rse.2009.10.008 DOI

Johnson, C. N. , Balmford, A. , Brook, B. W. , Buettel, J. C. , Galetti, M. , Guangchun, L. , & Wilmshurst, J. M. (2017). Biodiversity losses and conservation responses in the Anthropocene. Science, 356(6335), 270–275. 10.1126/science.aam9317 PubMed DOI

Juncá, F. A. , & Rodrigues, M. T. (2006). The reproductive success of Colostethus stepheni (Anura: Dendrobatidae). Studies on Neotropical Fauna and Environment, 41(1), 9–17. 10.1080/01650520500309883 DOI

Kennedy, C. M. , Oakleaf, J. R. , Theobald, D. M. , Baruch‐Mordo, S. , & Kiesecker, J. (2019). Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology, 25(3), 811–826. 10.1111/gcb.14549 PubMed DOI

Klaus, S. P. , & Lougheed, S. C. (2013). Changes in breeding phenology of eastern Ontario frogs over four decades. Ecology and Evolution, 3(4), 835–845. 10.1002/ece3.501 PubMed DOI PMC

Köhler, J. , Jansen, M. , Rodríguez, A. , Kok, P. J. R. , Toledo, L. F. , Emmrich, M. , Glaw, F. , Haddad, C. F. B. , Rödel, M.‐O. , & Vences, M. (2017). The use of bioacoustics in anuran taxonomy: Theory, terminology, methods and recommendations for best practice. Zootaxa, 4251, 1–124. 10.11646/zootaxa.4251.1.1 PubMed DOI

Kudo, G. , & Ida, T. Y. (2013). Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology, 94(10), 2311–2320. 10.1890/12-2003.1 PubMed DOI

Kuznetsova, A. , Brockhoff, P. B. , & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. 10.18637/jss.v082.i13 DOI

Laiolo, P. (2010). The emerging significance of bioacoustics in animal species conservation. Biological Conservation, 143(7), 1635–1645. 10.1016/j.biocon.2010.03.025 DOI

Larsen, A. S. , Schmidt, J. H. , Stapleton, H. , Kristenson, H. , Betchkal, D. , & McKenna, M. F. (2021). Monitoring the phenology of the wood frog breeding season using bioacoustic methods. Ecological Indicators, 131, 108142. 10.1016/j.ecolind.2021.108142 DOI

Le, D. T. T. , Rowley, J. J. L. , Tran, D. T. A. , & Hoang, H. D. (2020). The diet of a forest‐dependent frog species, Odorrana morafkai (Anura: Ranidae), in relation to habitat disturbance. Amphibia‐Reptilia, 41(1), 29–41. 10.1163/15685381-20191171 DOI

Lemckert, F. L. , & Shine, R. (1993). Costs of reproduction in a population of the frog Crinia signifera (Anura: Myobatrachidae) from southeastern Australia. Journal of Herpetology, 27(4), 420–425. 10.2307/1564830 DOI

Li, D. , Barve, N. , Brenskelle, L. , Earl, K. , Barve, V. , Belitz, M. W. , Doby, J. , Hantak, M. M. , Oswald, J. A. , & Stucky, B. J. (2021). Climate, urbanization, and species traits interactively drive flowering duration. Global Change Biology, 27(4), 892–903. 10.1111/gcb.15461 PubMed DOI

Li, D. , Stucky, B. J. , Deck, J. , Baiser, B. , & Guralnick, R. P. (2019). The effect of urbanization on plant phenology depends on regional temperature. Nature Ecology & Evolution, 3(12), 1661–1667. 10.1038/s41559-019-1004-1 PubMed DOI

Liu, G. , Rowley, J. J. L. , Kingsford, R. T. , & Callaghan, C. T. (2021). Species' traits drive amphibian tolerance to anthropogenic habitat modification. Global Change Biology, 27(13), 3120–3132. 10.1111/gcb.15623 PubMed DOI

Loman, J. (2009). Primary and secondary phenology. Does it pay a frog to spawn early? Journal of Zoology, 279(1), 64–70. 10.1111/j.1469-7998.2009.00589.x DOI

Love, E. K. , & Bee, M. A. (2010). An experimental test of noise‐dependent voice amplitude regulation in Cope's grey treefrog, Hyla chrysoscelis . Animal Behaviour, 80(3), 509–515. 10.1016/j.anbehav.2010.05.031 PubMed DOI PMC

Lowry, H. , Lill, A. , & Wong, B. B. (2013). Behavioural responses of wildlife to urban environments. Biological Reviews of the Cambridge Philosophical Society, 88(3), 537–549. 10.1111/brv.12012 PubMed DOI

Luedeling, E. (2019). chillR: Statistical methods for phenology analysis in temperate fruit trees. R package version 0.70.21. https://CRAN.R‐project.org/package=chillR

Mayor, S. J. , Guralnick, R. P. , Tingley, M. W. , Otegui, J. , Withey, J. C. , Elmendorf, S. C. , Andrew, M. E. , Leyk, S. , Pearse, I. S. , & Schneider, D. C. (2017). Increasing phenological asynchrony between spring green‐up and arrival of migratory birds. Scientific Reports, 7(1), 1902. 10.1038/s41598-017-02045-z PubMed DOI PMC

McCauley, S. J. , Bouchard, S. S. , Farina, B. J. , Isvaran, K. , Quader, S. , Wood, D. W. , & St. Mary, C. M. (2000). Energetic dynamics and anuran breeding phenology: Insights from a dynamic game. Behavioral Ecology, 11(4), 429–436. 10.1093/beheco/11.4.429 DOI

Merckx, T. , Nielsen, M. E. , Heliölä, J. , Kuussaari, M. , Pettersson, L. B. , Pöyry, J. , Tiainen, J. , Gotthard, K. , & Kivelä, S. M. (2021). Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in lepidoptera. Proceedings of the National Academy of Sciences of the USA, 118(40), e2106006118. 10.1073/pnas.2106006118 PubMed DOI PMC

Miller, M. W. (2006). Apparent effects of light pollution on singing behavior of American robins. The Condor, 108(1), 130–139. 10.1093/condor/108.1.130 DOI

Mills, S. , Weiss, S. , & Liang, C. (2013). VIIRS day/night band (DNB) stray light characterization and correction. Proceedings SPIE 8866, Earth Observing Systems XVIII, 88661P. 10.1117/12.2023107 DOI

Mitchell, B. A. , Callaghan, C. T. , & Rowley, J. J. L. (2020). Continental‐scale citizen science data reveal no changes in acoustic responses of a widespread tree frog to an urbanisation gradient. Journal of Urban Ecology, 6(1), 1–12. 10.1093/jue/juaa002 DOI

Mockford, E. J. , & Marshall, R. C. (2009). Effects of urban noise on song and response behaviour in great tits. Proceedings of the Biological Sciences, 276(1669), 2979–2985. 10.1098/rspb.2009.0586 PubMed DOI PMC

Møller, A. P. (2009). Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western palearctic. Oecologia, 159(4), 849–858. 10.1007/s00442-008-1259-8 PubMed DOI

Møller, A. P. , Díaz, M. , Grim, T. , Dvorská, A. , Flensted‐Jensen, E. , Ibáñez‐Álamo, J. D. , Jokimäki, J. , Mänd, R. , Markó, G. , Szymański, P. , & Tryjanowski, P. (2015). Effects of urbanization on bird phenology: A continental study of paired urban and rural populations. Climate Research, 66(3), 185–199. 10.3354/cr01344 DOI

Murray, K. A. , Rosauer, D. , McCallum, H. , & Skerratt, L. F. (2011). Integrating species traits with extrinsic threats: Closing the gap between predicting and preventing species declines. Proceedings of the Royal Society B: Biological Sciences, 278(1711), 1515–1523. 10.1098/rspb.2010.1872 PubMed DOI PMC

Neelon, D. P. , & Höbel, G. (2019). Staying ahead of the game—Plasticity in chorusing behavior allows males to remain attractive in different social environments. Behavioral Ecology and Sociobiology, 73(9), 124. 10.1007/s00265-019-2737-1 DOI

Neil, K. , & Wu, J. (2006). Effects of urbanization on plant flowering phenology: A review. Urban Ecosystem, 9(3), 243–257. 10.1007/s11252-006-9354-2 DOI

Nemeth, E. , & Brumm, H. (2009). Blackbirds sing higher‐pitched songs in cities: Adaptation to habitat acoustics or side‐effect of urbanization? Animal Behaviour, 78(3), 637–641. 10.1016/j.anbehav.2009.06.016 DOI

Oertli, B. , & Parris, K. M. (2019). Review: Toward management of urban ponds for freshwater biodiversity. Ecosphere, 10(7), e02810. 10.1002/ecs2.2810 DOI

Parmesan, C. (2007). Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13(9), 1860–1872. 10.1111/j.1365-2486.2007.01404.x DOI

Parris, K. M. , Velik‐Lord, M. , & North, J. M. (2009). Frogs call at a higher pitch in traffic noise. Ecology and Society, 14(1), 25. 10.5751/es-02687-140125 DOI

Pathirana, A. , Denekew, H. B. , Veerbeek, W. , Zevenbergen, C. , & Banda, A. T. (2014). Impact of urban growth‐driven landuse change on microclimate and extreme precipitation—A sensitivity study. Atmospheric Research, 138, 59–72. 10.1016/j.atmosres.2013.10.005 DOI

Perry, G. , Buchanan, B. W. , Fisher, R. N. , Salmon, M. , & Wise, S. E. (2008). Effects of artificial night lighting on amphibians and reptiles in urban environments. In Mitchell J. C., Jung Brown R. E., & Bartholomew B. (Eds.), Urban Herpetology (Vol. 3, pp. 239–256). Society for the Study of Amphibians and Reptiles.

Pröhl, H. (2003). Variation in male calling behaviour and relation to male mating success in the strawberry poison frog (Dendrobates pumilio). Ethology, 109(4), 273–290. 10.1046/j.1439-0310.2003.00863.x DOI

R Core Team . (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/

Rabin, L. A. , & Greene, C. M. (2002). Changes to acoustic communication systems in human‐altered environments. Journal of Comparative Psychology, 116(2), 137–141. 10.1037/0735-7036.116.2.137 PubMed DOI

Reading, C. J. (1998). The effect of winter temperatures on the timing of breeding activity in the common toad Bufo bufo . Oecologia, 117(4), 469–475. 10.1007/s004420050682 PubMed DOI

Roca, I. T. , Desrochers, L. , Giacomazzo, M. , Bertolo, A. , Bolduc, P. , Deschesnes, R. , Martin, C. A. , Rainville, V. , Rheault, G. , & Proulx, R. (2016). Shifting song frequencies in response to anthropogenic noise: A meta‐analysis on birds and anurans. Behavioral Ecology, 27(5), 1269–1274. 10.1093/beheco/arw060 DOI

Rodrigues, A. S. L. , Brooks, T. M. , Butchart, S. H. M. , Chanson, J. , Cox, N. , Hoffmann, M. , & Stuart, S. N. (2014). Spatially explicit trends in the global conservation status of vertebrates. PLoS One, 9(11), e113934. 10.1371/journal.pone.0113934 PubMed DOI PMC

Rowley, J. J. L. , & Callaghan, C. T. (2020). The FrogID dataset: Expert‐validated occurrence records of Australia's frogs collected by citizen scientists. ZooKeys, 912, 139–151. 10.3897/zookeys.912.38253 PubMed DOI PMC

Rowley, J. J. L. , Callaghan, C. T. , Cutajar, T. , Portway, C. , Potter, K. , Mahony, S. , Trembath, D. , Flemons, P. , & Woods, A. (2019). FrogID: Citizen scientists provide validated biodiversity data on frogs of Australia. Herpetological Conservation and Biology, 14(1), 155–170.

Shannon, G. , Mckenna, M. F. , Angeloni, L. M. , Crooks, K. R. , Fristrup, K. M. , Brown, E. , Warner, K. A. , Nelson, M. D. , White, C. , Briggs, J. , Mcfarland, S. , & Wittemyer, G. (2016). A synthesis of two decades of research documenting the effects of noise on wildlife. Biological Reviews, 91(4), 982–1005. 10.1111/brv.12207 PubMed DOI

Sievers, M. , Parris, K. M. , Swearer, S. E. , & Hale, R. (2018). Stormwater wetlands can function as ecological traps for urban frogs. Ecological Applications, 28(4), 1106–1115. 10.1002/eap.1714 PubMed DOI

Sih, A. , Ferrari, M. C. , & Harris, D. J. (2011). Evolution and behavioural responses to human‐induced rapid environmental change. Evolutionary Applications, 4(2), 367–387. 10.1111/j.1752-4571.2010.00166.x PubMed DOI PMC

Slabbekoorn, H. , Yeh, P. , & Hunt, K. (2007). Sound transmission and song divergence: A comparison of urban and forest acoustics. The Condor, 109(1), 67–78. 10.1093/condor/109.1.67 DOI

Souza, J. R. D. , Kaefer, I. L. , & Lima, A. P. (2021). Calling activity determines male mating success in a territorial frog with parental care. Ethology, 127(4), 359–365. 10.1111/eth.13135 DOI

Sparks, A. H. , Carroll, J. , Goldie, J. , Marchiori, D. , Melloy, P. , Padgham, M. , Parsonage, H. , & Pembleton, K. (2020). Bomrang: Australian government Bureau of Meteorology (BOM) data client. R package version 0.7.0. https://CRAN.R‐project.org/package=bomrang.

Sullivan, A. P. , Bird, D. W. , & Perry, G. H. (2017). Human behaviour as a long‐term ecological driver of non‐human evolution. Nature Ecology & Evolution, 1(3), 65. 10.1038/s41559-016-0065 PubMed DOI

Sullivan, B. K. , & Kwiatkowski, M. A. (2007). Courtship displays in anurans and lizards: Theoretical and empirical contributions to our understanding of costs and selection on males due to female choice. Functional Ecology, 21(4), 666–675. 10.1111/j.1365-2435.2007.01244.x DOI

Sun, J. , & Narins, P. (2005). Anthropogenic sounds differentially affect amphibian call rate. Biological Conservation, 121, 419–427. 10.1016/j.biocon.2004.05.017 DOI

Tagg, N. , Willie, J. , Petre, C.‐A. , & Haggis, O. (2013). Ground night nesting in chimpanzees: New insights from central chimpanzees (Pan troglodytes troglodytes) in south‐East Cameroon. Folia Primatologica, 84(6), 362–383. 10.1159/000353172 PubMed DOI

Tarwater, C. E. , & Arcese, P. (2018). Individual fitness and the effects of a changing climate on the cessation and length of the breeding period using a 34‐year study of a temperate songbird. Global Change Biology, 24(3), 1212–1223. 10.1111/gcb.13889 PubMed DOI

Teluguntla, P. , Thenkabail, P. S. , Xiong, J. , Gumma, M. K. , Giri, C. , Milesi, C. , Ozdogan, M. , Congalton, R. , Tilton, J. , & Sankey, T. T. (2015). Global cropland area database (GCAD) derived from remote sensing in support of food security in the twenty‐first century: Current achievements and future possibilities. In Thenkabail P. S. (Ed.), Land resources: Monitoring, modelling, and mapping, remote sensing handbook (Vol. 2). Taylor & Francis.

Todd, B. D. , Scott, D. E. , Pechmann, J. H. , & Gibbons, J. W. (2011). Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian community. Proceedings of the Royal Society B: Biological Sciences, 278(1715), 2191–2197. 10.1098/rspb.2010.1768 PubMed DOI PMC

Townroe, S. , & Callaghan, A. (2014). British container breeding mosquitoes: The impact of urbanisation and climate change on community composition and phenology. PLoS One, 9(4), e95325. 10.1371/journal.pone.0095325 PubMed DOI PMC

Villaseñor, N. R. , Driscoll, D. A. , Gibbons, P. , Calhoun, A. J. K. , & Lindenmayer, D. B. (2017). The relative importance of aquatic and terrestrial variables for frogs in an urbanizing landscape: Key insights for sustainable urban development. Landscape and Urban Planning, 157, 26–35. 10.1016/j.landurbplan.2016.06.006 DOI

Wanless, S. , Frederiksen, M. , Walton, J. , & Harris, M. P. (2009). Long‐term changes in breeding phenology at two seabird colonies in the western North Sea. Ibis, 151(2), 274–285. 10.1111/j.1474-919X.2008.00906.x DOI

Weaver, S. J. , Callaghan, C. T. , & Rowley, J. J. L. (2020). Anuran accents: Continental‐scale citizen science data reveal spatial and temporal patterns of call variability. Ecology and Evolution, 10(21), 12115–12128. 10.1002/ece3.6833 PubMed DOI PMC

While, G. M. , & Uller, T. (2014). Quo vadis amphibia? Global warming and breeding phenology in frogs, toads and salamanders. Ecography, 37(10), 921–929. 10.1111/ecog.00521 DOI

Willacy, R. J. , Mahony, M. , & Newell, D. A. (2015). If a frog calls in the forest: Bioacoustic monitoring reveals the breeding phenology of the endangered Richmond range mountain frog (Philoria richmondensis). Austral Ecology, 40(6), 625–633. 10.1111/aec.12228 DOI

Yamaguchi, A. , & Kelley, D. B. (2003). Hormonal mechanisms in acoustic communication. In Acoustic communication (pp. 275–323). Springer. 10.1007/0-387-22762-8_6 DOI

Young, H. S. , McCauley, D. J. , Galetti, M. , & Dirzo, R. (2016). Patterns, causes, and consequences of Anthropocene defaunation. Annual Review of Ecology, Evolution, and Systematics, 47, 333–358. 10.1146/annurev-ecolsys-112414-054142 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...