Anthropogenic habitat modification alters calling phenology of frogs
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35949049
PubMed Central
PMC9804319
DOI
10.1111/gcb.16367
Knihovny.cz E-zdroje
- Klíčová slova
- Australian frogs, advertisement call, bioacoustics, breeding season, citizen science, urbanization, vocal communication,
- MeSH
- biodiverzita MeSH
- ekosystém * MeSH
- roční období MeSH
- žáby * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Austrálie MeSH
Anthropogenic habitat modification significantly challenges biodiversity. With its intensification, understanding species' capacity to adapt is critical for conservation planning. However, little is known about whether and how different species are responding, particularly among frogs. We used a continental-scale citizen science dataset of >226,000 audio recordings of 42 Australian frog species to investigate how calling-a proxy for breeding-phenology varied along an anthropogenic modification gradient. Calling started earlier and breeding seasons lengthened with increasing modification intensity. Breeding seasons averaged 22.9 ± 8.25 days (standard error) longer in the most modified compared to the least modified regions, suggesting that frog breeding activity was sensitive to habitat modification. We also examined whether calls varied along a modification gradient by analysing the temporal and spectral properties of advertisement calls from a subset of 441 audio recordings of three broadly distributed frog species. There was no appreciable effect of anthropogenic habitat modification on any of the measured call variables, although there was high variability. With continued habitat modification, species may shift towards earlier and longer breeding seasons, with largely unknown ecological consequences in terms of proximate and ultimate fitness.
Australian Museum Research Institute Australian Museum Sydney New South Wales Australia
Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
German Centre for Integrative Biodiversity Research Halle Leipzig Germany
Zobrazit více v PubMed
Alberti, M. (2015). Eco‐evolutionary dynamics in an urbanizing planet. Trends in Ecology & Evolution, 30(2), 114–126. 10.1016/j.tree.2014.11.007 PubMed DOI
Altwegg, R. , & Reyer, H. U. (2003). Patterns of natural selection on size at metamorphosis in water frogs. Evolution, 57(4), 872–882. 10.1111/j.0014-3820.2003.tb00298.x PubMed DOI
Arietta, A. Z. A. , Freidenburg, L. K. , Urban, M. C. , Rodrigues, S. B. , Rubinstein, A. , & Skelly, D. K. (2020). Phenological delay despite warming in wood frog Rana sylvatica reproductive timing: A 20‐year study. Ecography, 43(12), 1791–1800. 10.1111/ecog.05297 DOI
Baker, B. , & Richardson, J. (2006). The effect of artificial light on male breeding‐season behaviour in green frogs, Rana clamitans melanota . Canadian Journal of Zoology, 84(10), 1528–1532. 10.1139/z06-142 DOI
Bates, D. , Maechler, M. , Bolker, B. , & Walker, S. (2015). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67(1), 1–48. 10.18637/jss.v067.i01 DOI
Beck, N. R. , & Heinsohn, R. (2006). Group composition and reproductive success of cooperatively breeding white‐winged choughs (Corcorax melanorhamphos) in urban and non‐urban habitat. Austral Ecology, 31(5), 588–596. 10.1111/j.1442-9993.2006.01589.x DOI
Bee, M. A. , Perrill, S. A. , & Owen, P. C. (2000). Male green frogs lower the pitch of acoustic signals in defense of territories: A possible dishonest signal of size? Behavioral Ecology, 11(2), 169–177. 10.1093/beheco/11.2.169 DOI
Bee, M. A. , & Swanson, E. M. (2007). Auditory masking of anuran advertisement calls by road traffic noise. Animal Behaviour, 74(6), 1765–1776. 10.1016/j.anbehav.2007.03.019 DOI
Belitz, M. W. , Barve, V. , Doby, J. R. , Hantak, M. M. , Larsen, E. A. , Li, D. , Oswald, J. A. , Sewnath, N. , Walters, M. , Barve, N. , Earl, K. , Gardner, N. , Guralnick, R. P. , & Stucky, B. J. (2021). Climate drivers of adult insect activity are conditioned by life history traits. Ecology Letters, 24(12), 2687–2699. 10.1111/ele.13889 PubMed DOI
Belitz, M. W. , Campbell, C. J. , & Li, D. (2020). Phenesse: Estimate phenological metrics using presence‐only data. R package version 0.1.2. https://CRAN.R‐project.org/package=phenesse
Belitz, M. W. , Larsen, E. A. , Ries, L. , & Guralnick, R. P. (2020). The accuracy of phenology estimators for use with sparsely sampled presence‐only observations. Methods in Ecology and Evolution, 11(10), 1273–1285. 10.1111/2041-210X.13448 DOI
Bosch, J. , & De la Riva, I. (2004). Are frog calls modulated by the environment? An analysis with anuran species from Bolivia. Canadian Journal of Zoology, 82(6), 880–888. 10.1139/z04-060 DOI
Both, C. , Bouwhuis, S. , Lessells, C. , & Visser, M. E. (2006). Climate change and population declines in a long‐distance migratory bird. Nature, 441(7089), 81–83. 10.1038/nature04539 PubMed DOI
Brumm, H. (2004). The impact of environmental noise on song amplitude in a territorial bird. Journal of Animal Ecology, 73(3), 434–440. 10.1111/j.0021-8790.2004.00814.x DOI
Byrne, P. G. (2008). Strategic male calling behavior in an Australian terrestrial toadlet (Pseudophryne bibronii). Copeia, 2008(1), 57–63. 10.1643/CE-05-294 DOI
Callaghan, C. T. , Liu, G. , Mitchell, B. A. , Poore, A. G. , & Rowley, J. J. L. (2021). Urbanization negatively impacts frog diversity at continental, regional, and local scales. Basic and Applied Ecology, 54, 64–74. 10.1016/j.baae.2021.04.003 DOI
Chick, L. D. , Strickler, S. A. , Perez, A. , Martin, R. A. , & Diamond, S. E. (2019). Urban heat islands advance the timing of reproduction in a social insect. Journal of Thermal Biology, 80, 119–125. 10.1016/j.jtherbio.2019.01.004 PubMed DOI
Chivers, D. P. , Kiesecker, J. M. , Marco, A. , Devito, J. , Anderson, M. T. , & Blaustein, A. R. (2001). Predator‐induced life history changes in amphibians: Egg predation induces hatching. Oikos, 92(1), 135–142. 10.1034/j.1600-0706.2001.920116.x DOI
Cunnington, G. M. , & Fahrig, L. (2010). Plasticity in the vocalizations of anurans in response to traffic noise. Acta Oecologica, 36(5), 463–470. 10.1016/j.actao.2010.06.002 DOI
Dawson, R. D. (2008). Timing of breeding and environmental factors as determinants of reproductive performance of tree swallows. Canadian Journal of Zoology, 86(8), 843–850. 10.1139/Z08-065 DOI
Deviche, P. , & Davies, S. (2014). Reproductive phenology of urban birds: Environmental cues and mechanisms. In Gil D. & Brumm H. (Eds.), Avian urban ecology: Behavioural and physiological adaptations (pp. 98–115). Oxford University Press.
Diamond, S. E. , Cayton, H. , Wepprich, T. , Jenkins, C. N. , Dunn, R. R. , Haddad, N. M. , & Ries, L. (2014). Unexpected phenological responses of butterflies to the interaction of urbanization and geographic temperature. Ecology, 95(9), 2613–2621. 10.1890/13-1848.1 DOI
Dirzo, R. , Young, H. S. , Galetti, M. , Ceballos, G. , Isaac, N. J. B. , & Collen, B. (2014). Defaunation in the Anthropocene. Science, 345(6195), 401–406. 10.1126/science.1251817 PubMed DOI
Ditchkoff, S. S. , Saalfeld, S. T. , & Gibson, C. J. (2006). Animal behavior in urban ecosystems: Modifications due to human‐induced stress. Urban Ecosystem, 9(1), 5–12. 10.1007/s11252-006-3262-3 DOI
Dominoni, D. M. , & Partecke, J. (2015). Does light pollution alter daylength? A test using light loggers on free‐ranging European blackbirds (Turdus merula). Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1667), 20140118. 10.1098/rstb.2014.0118 PubMed DOI PMC
Elvidge, C. D. , Baugh, K. , Zhizhin, M. , Hsu, F. C. , & Ghosh, T. (2017). VIIRS night‐time lights. International Journal of Remote Sensing, 38(21), 5860–5879. 10.1080/01431161.2017.1342050 DOI
Fisogni, A. , Hautekèete, N. , Piquot, Y. , Brun, M. , Vanappelghem, C. , Michez, D. , & Massol, F. (2020). Urbanization drives an early spring for plants but not for pollinators. Oikos, 129(11), 1681–1691. 10.1111/oik.07274 DOI
Fleischer, A. L., Jr. , Bowman, R. , & Woolfenden, G. E. (2003). Variation in foraging behavior, diet, and time of breeding of Florida scrub‐jays in suburban and wildland habitats. The Condor, 105(3), 515–527. 10.1093/condor/105.3.515 DOI
Forsburg, Z. R. , Guzman, A. , & Gabor, C. R. (2021). Artificial light at night (ALAN) affects the stress physiology but not the behavior or growth of Rana berlandieri and Bufo valliceps. Environmental Pollution, 277, 116775. 10.1016/j.envpol.2021.116775 PubMed DOI
Francis, C. D. , & Barber, J. R. (2013). A framework for understanding noise impacts on wildlife: An urgent conservation priority. Frontiers in Ecology and the Environment, 11(6), 305–313. 10.1890/120183 DOI
Fuller, R. A. , Warren, P. H. , & Gaston, K. J. (2007). Daytime noise predicts nocturnal singing in urban robins. Biology Letters, 3(4), 368–370. 10.1098/rsbl.2007.0134 PubMed DOI PMC
Gibbs, J. P. , & Breisch, A. R. (2001). Climate warming and calling phenology of frogs near Ithaca, New York, 1900–1999. Conservation Biology, 15(4), 1175–1178. 10.1046/j.1523-1739.2001.0150041175.x DOI
Gorelick, N. , Hancher, M. , Dixon, M. , Ilyushchenko, S. , Thau, D. , & Moore, R. (2017). Google earth engine: Planetary‐scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. 10.1016/j.rse.2017.06.031 DOI
Gorissen, L. , Snoeijs, T. , Duyse, E. V. , & Eens, M. (2005). Heavy metal pollution affects dawn singing behaviour in a small passerine bird. Oecologia, 145(3), 504–509. 10.1007/s00442-005-0091-7 PubMed DOI
Grant, R. A. , Chadwick, E. A. , & Halliday, T. (2009). The lunar cycle: A cue for amphibian reproductive phenology? Animal Behaviour, 78(2), 349–357. 10.1016/j.anbehav.2009.05.007 DOI
Halfwerk, W. , Lea, A. M. , Guerra, M. A. , Page, R. A. , & Ryan, M. J. (2015). Vocal responses to noise reveal the presence of the Lombard effect in a frog. Behavioral Ecology, 27(2), 669–676. 10.1093/beheco/arv204 DOI
Hall, A. S. (2016). Acute artificial light diminishes Central Texas anuran calling behavior. The American Midland Naturalist, 175(2), 183–193. 10.1674/0003-0031-175.2.183 DOI
Halupka, L. , Borowiec, M. , Neubauer, G. , & Halupka, K. (2021). Fitness consequences of longer breeding seasons of a migratory passerine under changing climatic conditions. Journal of Animal Ecology, 90(7), 1655–1665. 10.1111/1365-2656.13481 PubMed DOI PMC
Hamer, A. J. , & McDonnell, M. J. (2008). Amphibian ecology and conservation in the urbanising world: A review. Biological Conservation, 141(10), 2432–2449. 10.1016/j.biocon.2008.07.020 DOI
Hart, A. G. , Hesselberg, T. , Nesbit, R. , & Goodenough, A. E. (2018). The spatial distribution and environmental triggers of ant mating flights: Using citizen‐science data to reveal national patterns. Ecography, 41(6), 877–888. 10.1111/ecog.03140 DOI
Hayes, T. B. , Falso, P. , Gallipeau, S. , & Stice, M. (2010). The cause of global amphibian declines: A developmental endocrinologist's perspective. Journal of Experimental Biology, 213(6), 921–933. 10.1242/jeb.040865 PubMed DOI PMC
Hegland, S. J. , Nielsen, A. , Lázaro, A. , Bjerknes, A. L. , & Totland, Ø. (2009). How does climate warming affect plant‐pollinator interactions? Ecology Letters, 12(2), 184–195. 10.1111/j.1461-0248.2008.01269.x PubMed DOI
Hoffmann, E. P. , & Mitchell, N. J. (2021). Breeding phenology of a terrestrial‐breeding frog is associated with soil water potential: Implications for conservation in a changing climate. Austral Ecology, 47, 353–364. 10.1111/aec.13122 DOI
Hoffmann, M. , Hilton‐Taylor, C. , Angulo, A. , Böhm, M. , Brooks, T. M. , Butchart, S. H. M. , Carpenter, K. E. , Chanson, J. , Collen, B. , Cox, N. A. , Darwall, W. R. T. , Dulvy, N. K. , Harrison, L. R. , Katariya, V. , Pollock, C. M. , Quader, S. , Richman, N. I. , Rodrigues, A. S. L. , Tognelli, M. F. , … Stuart, S. N. (2010). The impact of conservation on the status of the world's vertebrates. Science, 330(6010), 1503–1509. 10.1126/science.1194442 PubMed DOI
Hoskin, C. , & Goosem, M. (2010). Road impacts on abundance, call traits, and body size of rainforest frogs in Northeast Australia. Ecology and Society, 15(3), 15. 10.5751/ES-03272-150315 DOI
Imhoff, M. L. , Zhang, P. , Wolfe, R. E. , & Bounoua, L. (2010). Remote sensing of the urban heat Island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3), 504–513. 10.1016/j.rse.2009.10.008 DOI
Johnson, C. N. , Balmford, A. , Brook, B. W. , Buettel, J. C. , Galetti, M. , Guangchun, L. , & Wilmshurst, J. M. (2017). Biodiversity losses and conservation responses in the Anthropocene. Science, 356(6335), 270–275. 10.1126/science.aam9317 PubMed DOI
Juncá, F. A. , & Rodrigues, M. T. (2006). The reproductive success of Colostethus stepheni (Anura: Dendrobatidae). Studies on Neotropical Fauna and Environment, 41(1), 9–17. 10.1080/01650520500309883 DOI
Kennedy, C. M. , Oakleaf, J. R. , Theobald, D. M. , Baruch‐Mordo, S. , & Kiesecker, J. (2019). Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology, 25(3), 811–826. 10.1111/gcb.14549 PubMed DOI
Klaus, S. P. , & Lougheed, S. C. (2013). Changes in breeding phenology of eastern Ontario frogs over four decades. Ecology and Evolution, 3(4), 835–845. 10.1002/ece3.501 PubMed DOI PMC
Köhler, J. , Jansen, M. , Rodríguez, A. , Kok, P. J. R. , Toledo, L. F. , Emmrich, M. , Glaw, F. , Haddad, C. F. B. , Rödel, M.‐O. , & Vences, M. (2017). The use of bioacoustics in anuran taxonomy: Theory, terminology, methods and recommendations for best practice. Zootaxa, 4251, 1–124. 10.11646/zootaxa.4251.1.1 PubMed DOI
Kudo, G. , & Ida, T. Y. (2013). Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology, 94(10), 2311–2320. 10.1890/12-2003.1 PubMed DOI
Kuznetsova, A. , Brockhoff, P. B. , & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. 10.18637/jss.v082.i13 DOI
Laiolo, P. (2010). The emerging significance of bioacoustics in animal species conservation. Biological Conservation, 143(7), 1635–1645. 10.1016/j.biocon.2010.03.025 DOI
Larsen, A. S. , Schmidt, J. H. , Stapleton, H. , Kristenson, H. , Betchkal, D. , & McKenna, M. F. (2021). Monitoring the phenology of the wood frog breeding season using bioacoustic methods. Ecological Indicators, 131, 108142. 10.1016/j.ecolind.2021.108142 DOI
Le, D. T. T. , Rowley, J. J. L. , Tran, D. T. A. , & Hoang, H. D. (2020). The diet of a forest‐dependent frog species, Odorrana morafkai (Anura: Ranidae), in relation to habitat disturbance. Amphibia‐Reptilia, 41(1), 29–41. 10.1163/15685381-20191171 DOI
Lemckert, F. L. , & Shine, R. (1993). Costs of reproduction in a population of the frog Crinia signifera (Anura: Myobatrachidae) from southeastern Australia. Journal of Herpetology, 27(4), 420–425. 10.2307/1564830 DOI
Li, D. , Barve, N. , Brenskelle, L. , Earl, K. , Barve, V. , Belitz, M. W. , Doby, J. , Hantak, M. M. , Oswald, J. A. , & Stucky, B. J. (2021). Climate, urbanization, and species traits interactively drive flowering duration. Global Change Biology, 27(4), 892–903. 10.1111/gcb.15461 PubMed DOI
Li, D. , Stucky, B. J. , Deck, J. , Baiser, B. , & Guralnick, R. P. (2019). The effect of urbanization on plant phenology depends on regional temperature. Nature Ecology & Evolution, 3(12), 1661–1667. 10.1038/s41559-019-1004-1 PubMed DOI
Liu, G. , Rowley, J. J. L. , Kingsford, R. T. , & Callaghan, C. T. (2021). Species' traits drive amphibian tolerance to anthropogenic habitat modification. Global Change Biology, 27(13), 3120–3132. 10.1111/gcb.15623 PubMed DOI
Loman, J. (2009). Primary and secondary phenology. Does it pay a frog to spawn early? Journal of Zoology, 279(1), 64–70. 10.1111/j.1469-7998.2009.00589.x DOI
Love, E. K. , & Bee, M. A. (2010). An experimental test of noise‐dependent voice amplitude regulation in Cope's grey treefrog, Hyla chrysoscelis . Animal Behaviour, 80(3), 509–515. 10.1016/j.anbehav.2010.05.031 PubMed DOI PMC
Lowry, H. , Lill, A. , & Wong, B. B. (2013). Behavioural responses of wildlife to urban environments. Biological Reviews of the Cambridge Philosophical Society, 88(3), 537–549. 10.1111/brv.12012 PubMed DOI
Luedeling, E. (2019). chillR: Statistical methods for phenology analysis in temperate fruit trees. R package version 0.70.21. https://CRAN.R‐project.org/package=chillR
Mayor, S. J. , Guralnick, R. P. , Tingley, M. W. , Otegui, J. , Withey, J. C. , Elmendorf, S. C. , Andrew, M. E. , Leyk, S. , Pearse, I. S. , & Schneider, D. C. (2017). Increasing phenological asynchrony between spring green‐up and arrival of migratory birds. Scientific Reports, 7(1), 1902. 10.1038/s41598-017-02045-z PubMed DOI PMC
McCauley, S. J. , Bouchard, S. S. , Farina, B. J. , Isvaran, K. , Quader, S. , Wood, D. W. , & St. Mary, C. M. (2000). Energetic dynamics and anuran breeding phenology: Insights from a dynamic game. Behavioral Ecology, 11(4), 429–436. 10.1093/beheco/11.4.429 DOI
Merckx, T. , Nielsen, M. E. , Heliölä, J. , Kuussaari, M. , Pettersson, L. B. , Pöyry, J. , Tiainen, J. , Gotthard, K. , & Kivelä, S. M. (2021). Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in lepidoptera. Proceedings of the National Academy of Sciences of the USA, 118(40), e2106006118. 10.1073/pnas.2106006118 PubMed DOI PMC
Miller, M. W. (2006). Apparent effects of light pollution on singing behavior of American robins. The Condor, 108(1), 130–139. 10.1093/condor/108.1.130 DOI
Mills, S. , Weiss, S. , & Liang, C. (2013). VIIRS day/night band (DNB) stray light characterization and correction. Proceedings SPIE 8866, Earth Observing Systems XVIII, 88661P. 10.1117/12.2023107 DOI
Mitchell, B. A. , Callaghan, C. T. , & Rowley, J. J. L. (2020). Continental‐scale citizen science data reveal no changes in acoustic responses of a widespread tree frog to an urbanisation gradient. Journal of Urban Ecology, 6(1), 1–12. 10.1093/jue/juaa002 DOI
Mockford, E. J. , & Marshall, R. C. (2009). Effects of urban noise on song and response behaviour in great tits. Proceedings of the Biological Sciences, 276(1669), 2979–2985. 10.1098/rspb.2009.0586 PubMed DOI PMC
Møller, A. P. (2009). Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western palearctic. Oecologia, 159(4), 849–858. 10.1007/s00442-008-1259-8 PubMed DOI
Møller, A. P. , Díaz, M. , Grim, T. , Dvorská, A. , Flensted‐Jensen, E. , Ibáñez‐Álamo, J. D. , Jokimäki, J. , Mänd, R. , Markó, G. , Szymański, P. , & Tryjanowski, P. (2015). Effects of urbanization on bird phenology: A continental study of paired urban and rural populations. Climate Research, 66(3), 185–199. 10.3354/cr01344 DOI
Murray, K. A. , Rosauer, D. , McCallum, H. , & Skerratt, L. F. (2011). Integrating species traits with extrinsic threats: Closing the gap between predicting and preventing species declines. Proceedings of the Royal Society B: Biological Sciences, 278(1711), 1515–1523. 10.1098/rspb.2010.1872 PubMed DOI PMC
Neelon, D. P. , & Höbel, G. (2019). Staying ahead of the game—Plasticity in chorusing behavior allows males to remain attractive in different social environments. Behavioral Ecology and Sociobiology, 73(9), 124. 10.1007/s00265-019-2737-1 DOI
Neil, K. , & Wu, J. (2006). Effects of urbanization on plant flowering phenology: A review. Urban Ecosystem, 9(3), 243–257. 10.1007/s11252-006-9354-2 DOI
Nemeth, E. , & Brumm, H. (2009). Blackbirds sing higher‐pitched songs in cities: Adaptation to habitat acoustics or side‐effect of urbanization? Animal Behaviour, 78(3), 637–641. 10.1016/j.anbehav.2009.06.016 DOI
Oertli, B. , & Parris, K. M. (2019). Review: Toward management of urban ponds for freshwater biodiversity. Ecosphere, 10(7), e02810. 10.1002/ecs2.2810 DOI
Parmesan, C. (2007). Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13(9), 1860–1872. 10.1111/j.1365-2486.2007.01404.x DOI
Parris, K. M. , Velik‐Lord, M. , & North, J. M. (2009). Frogs call at a higher pitch in traffic noise. Ecology and Society, 14(1), 25. 10.5751/es-02687-140125 DOI
Pathirana, A. , Denekew, H. B. , Veerbeek, W. , Zevenbergen, C. , & Banda, A. T. (2014). Impact of urban growth‐driven landuse change on microclimate and extreme precipitation—A sensitivity study. Atmospheric Research, 138, 59–72. 10.1016/j.atmosres.2013.10.005 DOI
Perry, G. , Buchanan, B. W. , Fisher, R. N. , Salmon, M. , & Wise, S. E. (2008). Effects of artificial night lighting on amphibians and reptiles in urban environments. In Mitchell J. C., Jung Brown R. E., & Bartholomew B. (Eds.), Urban Herpetology (Vol. 3, pp. 239–256). Society for the Study of Amphibians and Reptiles.
Pröhl, H. (2003). Variation in male calling behaviour and relation to male mating success in the strawberry poison frog (Dendrobates pumilio). Ethology, 109(4), 273–290. 10.1046/j.1439-0310.2003.00863.x DOI
R Core Team . (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/
Rabin, L. A. , & Greene, C. M. (2002). Changes to acoustic communication systems in human‐altered environments. Journal of Comparative Psychology, 116(2), 137–141. 10.1037/0735-7036.116.2.137 PubMed DOI
Reading, C. J. (1998). The effect of winter temperatures on the timing of breeding activity in the common toad Bufo bufo . Oecologia, 117(4), 469–475. 10.1007/s004420050682 PubMed DOI
Roca, I. T. , Desrochers, L. , Giacomazzo, M. , Bertolo, A. , Bolduc, P. , Deschesnes, R. , Martin, C. A. , Rainville, V. , Rheault, G. , & Proulx, R. (2016). Shifting song frequencies in response to anthropogenic noise: A meta‐analysis on birds and anurans. Behavioral Ecology, 27(5), 1269–1274. 10.1093/beheco/arw060 DOI
Rodrigues, A. S. L. , Brooks, T. M. , Butchart, S. H. M. , Chanson, J. , Cox, N. , Hoffmann, M. , & Stuart, S. N. (2014). Spatially explicit trends in the global conservation status of vertebrates. PLoS One, 9(11), e113934. 10.1371/journal.pone.0113934 PubMed DOI PMC
Rowley, J. J. L. , & Callaghan, C. T. (2020). The FrogID dataset: Expert‐validated occurrence records of Australia's frogs collected by citizen scientists. ZooKeys, 912, 139–151. 10.3897/zookeys.912.38253 PubMed DOI PMC
Rowley, J. J. L. , Callaghan, C. T. , Cutajar, T. , Portway, C. , Potter, K. , Mahony, S. , Trembath, D. , Flemons, P. , & Woods, A. (2019). FrogID: Citizen scientists provide validated biodiversity data on frogs of Australia. Herpetological Conservation and Biology, 14(1), 155–170.
Shannon, G. , Mckenna, M. F. , Angeloni, L. M. , Crooks, K. R. , Fristrup, K. M. , Brown, E. , Warner, K. A. , Nelson, M. D. , White, C. , Briggs, J. , Mcfarland, S. , & Wittemyer, G. (2016). A synthesis of two decades of research documenting the effects of noise on wildlife. Biological Reviews, 91(4), 982–1005. 10.1111/brv.12207 PubMed DOI
Sievers, M. , Parris, K. M. , Swearer, S. E. , & Hale, R. (2018). Stormwater wetlands can function as ecological traps for urban frogs. Ecological Applications, 28(4), 1106–1115. 10.1002/eap.1714 PubMed DOI
Sih, A. , Ferrari, M. C. , & Harris, D. J. (2011). Evolution and behavioural responses to human‐induced rapid environmental change. Evolutionary Applications, 4(2), 367–387. 10.1111/j.1752-4571.2010.00166.x PubMed DOI PMC
Slabbekoorn, H. , Yeh, P. , & Hunt, K. (2007). Sound transmission and song divergence: A comparison of urban and forest acoustics. The Condor, 109(1), 67–78. 10.1093/condor/109.1.67 DOI
Souza, J. R. D. , Kaefer, I. L. , & Lima, A. P. (2021). Calling activity determines male mating success in a territorial frog with parental care. Ethology, 127(4), 359–365. 10.1111/eth.13135 DOI
Sparks, A. H. , Carroll, J. , Goldie, J. , Marchiori, D. , Melloy, P. , Padgham, M. , Parsonage, H. , & Pembleton, K. (2020). Bomrang: Australian government Bureau of Meteorology (BOM) data client. R package version 0.7.0. https://CRAN.R‐project.org/package=bomrang.
Sullivan, A. P. , Bird, D. W. , & Perry, G. H. (2017). Human behaviour as a long‐term ecological driver of non‐human evolution. Nature Ecology & Evolution, 1(3), 65. 10.1038/s41559-016-0065 PubMed DOI
Sullivan, B. K. , & Kwiatkowski, M. A. (2007). Courtship displays in anurans and lizards: Theoretical and empirical contributions to our understanding of costs and selection on males due to female choice. Functional Ecology, 21(4), 666–675. 10.1111/j.1365-2435.2007.01244.x DOI
Sun, J. , & Narins, P. (2005). Anthropogenic sounds differentially affect amphibian call rate. Biological Conservation, 121, 419–427. 10.1016/j.biocon.2004.05.017 DOI
Tagg, N. , Willie, J. , Petre, C.‐A. , & Haggis, O. (2013). Ground night nesting in chimpanzees: New insights from central chimpanzees (Pan troglodytes troglodytes) in south‐East Cameroon. Folia Primatologica, 84(6), 362–383. 10.1159/000353172 PubMed DOI
Tarwater, C. E. , & Arcese, P. (2018). Individual fitness and the effects of a changing climate on the cessation and length of the breeding period using a 34‐year study of a temperate songbird. Global Change Biology, 24(3), 1212–1223. 10.1111/gcb.13889 PubMed DOI
Teluguntla, P. , Thenkabail, P. S. , Xiong, J. , Gumma, M. K. , Giri, C. , Milesi, C. , Ozdogan, M. , Congalton, R. , Tilton, J. , & Sankey, T. T. (2015). Global cropland area database (GCAD) derived from remote sensing in support of food security in the twenty‐first century: Current achievements and future possibilities. In Thenkabail P. S. (Ed.), Land resources: Monitoring, modelling, and mapping, remote sensing handbook (Vol. 2). Taylor & Francis.
Todd, B. D. , Scott, D. E. , Pechmann, J. H. , & Gibbons, J. W. (2011). Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian community. Proceedings of the Royal Society B: Biological Sciences, 278(1715), 2191–2197. 10.1098/rspb.2010.1768 PubMed DOI PMC
Townroe, S. , & Callaghan, A. (2014). British container breeding mosquitoes: The impact of urbanisation and climate change on community composition and phenology. PLoS One, 9(4), e95325. 10.1371/journal.pone.0095325 PubMed DOI PMC
Villaseñor, N. R. , Driscoll, D. A. , Gibbons, P. , Calhoun, A. J. K. , & Lindenmayer, D. B. (2017). The relative importance of aquatic and terrestrial variables for frogs in an urbanizing landscape: Key insights for sustainable urban development. Landscape and Urban Planning, 157, 26–35. 10.1016/j.landurbplan.2016.06.006 DOI
Wanless, S. , Frederiksen, M. , Walton, J. , & Harris, M. P. (2009). Long‐term changes in breeding phenology at two seabird colonies in the western North Sea. Ibis, 151(2), 274–285. 10.1111/j.1474-919X.2008.00906.x DOI
Weaver, S. J. , Callaghan, C. T. , & Rowley, J. J. L. (2020). Anuran accents: Continental‐scale citizen science data reveal spatial and temporal patterns of call variability. Ecology and Evolution, 10(21), 12115–12128. 10.1002/ece3.6833 PubMed DOI PMC
While, G. M. , & Uller, T. (2014). Quo vadis amphibia? Global warming and breeding phenology in frogs, toads and salamanders. Ecography, 37(10), 921–929. 10.1111/ecog.00521 DOI
Willacy, R. J. , Mahony, M. , & Newell, D. A. (2015). If a frog calls in the forest: Bioacoustic monitoring reveals the breeding phenology of the endangered Richmond range mountain frog (Philoria richmondensis). Austral Ecology, 40(6), 625–633. 10.1111/aec.12228 DOI
Yamaguchi, A. , & Kelley, D. B. (2003). Hormonal mechanisms in acoustic communication. In Acoustic communication (pp. 275–323). Springer. 10.1007/0-387-22762-8_6 DOI
Young, H. S. , McCauley, D. J. , Galetti, M. , & Dirzo, R. (2016). Patterns, causes, and consequences of Anthropocene defaunation. Annual Review of Ecology, Evolution, and Systematics, 47, 333–358. 10.1146/annurev-ecolsys-112414-054142 DOI