Genomic basis and phenotypic manifestation of (non-)parallel serpentine adaptation in Arabidopsis arenosa
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35950324
DOI
10.1111/evo.14593
Knihovny.cz E-resources
- Keywords
- Adaptation, Arabidopsis, genetic redundancy, natural selection, parallel evolution, reciprocal transplant,
- MeSH
- Arabidopsis * genetics MeSH
- Phenotype MeSH
- Adaptation, Physiological genetics MeSH
- Genomics MeSH
- Soil MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Soil MeSH
Parallel evolution is common in nature and provides one of the most compelling examples of rapid environmental adaptation. In contrast to the recent burst of studies addressing genomic basis of parallel evolution, integrative studies linking genomic and phenotypic parallelism are scarce. Edaphic islands of toxic serpentine soils provide ideal systems for studying rapid parallel adaptation in plants, imposing strong, spatially replicated selection on recently diverged populations. We leveraged threefold independent serpentine adaptation of Arabidopsis arenosa and combined reciprocal transplants, ion uptake phenotyping, and available genome-wide polymorphisms to test if parallelism is manifested to a similar extent at both genomic and phenotypic levels. We found pervasive phenotypic parallelism in functional traits yet with varying magnitude of fitness differences that was congruent with neutral genetic differentiation between populations. Limited costs of serpentine adaptation suggest absence of soil-driven trade-offs. On the other hand, the genomic parallelism at the gene level was significant, although relatively minor. Therefore, the similarly modified phenotypes, for example, of ion uptake arose possibly by selection on different loci in similar functional pathways. In summary, we bring evidence for the important role of genetic redundancy in rapid adaptation involving traits with polygenic architecture.
Department of Botany Faculty of Science Charles University Prague 128 00 Czech Republic
Faculty of Chemical Technology University of Pardubice Pardubice 532 10 Czech Republic
Institute of Botany Czech Academy of Sciences Průhonice 252 43 Czech Republic
See more in PubMed
Alexa, A. & Rahnenfuhrer, J. (2021) topGO: enrichment analysis for gene ontology. R package version.
Arnold, B.J., Lahner, B., DaCosta, J.M., Weisman, C.M., Hollister, J.D., Salt, D.E., Bomblies, K. & Yant, L. (2016) Borrowed alleles and convergence in serpentine adaptation. Proc. Natl. Acad. Sci., 113, 8320-8325.
Barghi, N., Tobler, R., Nolte, V., Jaksic, A.M., Mallard, F., Otte, K.A., Dolezal, M., Taus, T., Kofler, R., Schlötterer, C. (2019) Polygenic adaptation fuels genetic redundancy in Drosophila. PLoS Biol. 17, e3000128.
Barghi, N., Hermisson, J. & Schlötterer, C. (2020) Polygenic adaptation: a unifying framework to understand positive selection. Nat. Rev. Genet., 21, 769-781.
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015) Fitting linear mixed-effects models using lme4. J. Stat. Softw., 67, 1-48.
Berglund, A.N., Dahlgren, S. & Westerbergh, A. (2004 Evidence for parallel evolution and site-specific selection of serpentine tolerance in Cerastium alpinum during the colonization of Scandinavia. New Phytologist, 161, 199-209.
Bohutínská, M., Vlček, J., Yair, S., Leanen, B., Konečná, V., Fracassetti, M., Slotte, T. & Kolář, F. (2021 Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. Proceedings of the National Academy of Sciences, 118, e2022713118.
Bolnick, D.I., Barrett, R.D.H., Oke, K.B., Rennison, D.J. & Stuart, Y.E. 2018 (Non)parallel evolution. Annual Review of Ecology, Evolution, and Systematics, 49, 303-330.
Bono, L.M., Smith, L.B., Pfennig, D.W. & Burch, C.L. 2017 The emergence of performance trade-offs during local adaptation: insights from experimental evolution. Molecular Ecology, 26, 1720-1733.
Boyd, R.S., Wall, M.A., Santos, S.R. & Davis, M.A. 2009 Variation of morphology and elemental concentrations in the California nickel hyperaccumulator Streptanthus polygaloides (Brassicaceae). Northeastern Naturalist, 16, 21-38.
Boyle, E.A., Li, Y.I. & Pritchard, J.K. 2017 An expanded view of complex traits: from polygenic to omnigenic. Cell, 169, 1177-1186.
Bradshaw, H.D. (2005 Mutations in CAX1 produce phenotypes characteristic of plants tolerant to serpentine soils. New Phytologist, 167, 81-88.
Brady, K.U., Kruckeberg, A.R. & Bradshaw, H.D. Jr. (2005 Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution, and Systematics, 36, 243-266.
Bratteler, M., Baltisberger, M. & Widmer, A. 2006 QTL analysis of intraspecific differences between two Silene vulgaris ecotypes. Annals of Botany, 98, 411-419.
Burrell, M.A., Hawkins, A.K. & Pepper, A.E. 2012 Genetic analyses of nickel tolerance in a North American serpentine endemic plant, Caulanthus amplexicaulis var. barbarae (Brassicaceae). American Journal of Botany, 99, 1875-1883.
Choi, W.G., Toyota, M., Kim, S.H., Hilleary, R. & Gilroy, S. 2014 Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proceedings of the National Academy of Sciences, 111, 6497-6502.
Fang, B., Kemppainen, P., Momigliano, P. & Merilä, J. 2021 Population structure limits parallel evolution in sticklebacks. Molecular Biology and Evolution, 38, 4205-4221.
Fox, J. & Weisberg, S. 2019 An R companion to applied regression. Sage, Thousand Oaks, CA.
Fraïsse, C. & Welch, J.J. 2019 The distribution of epistasis on simple fitness landscapes. Biology Letters, 15, 20180881.
Geyer, C.J., Wagenius, S. & Shaw, R.G. 2007 Aster models for life history analysis. Biometrika, 94, 415-426.
Hämälä, T. & Savolainen, O. 2019 Genomic patterns of local adaptation under gene flow in Arabidopsis lyrata. Molecular Biology and Evolution, 36, 2557-2571.
Hereford, J. (2009 A quantitative survey of local adaptation and fitness trade-offs. American Naturalist, 173, 579-588.
Hermisson, J. & Pennings, P.S. 2017 Soft sweeps and beyond: understanding the patterns and probabilities of selection footprints under rapid adaptation. Methods in Ecology and Evolution, 8, 700-716.
Hoban, S., Kelley, J.L., Lotterhos, K.E., Antolin, M.F., Bradburd, G., Lowry, D.B., Poss, M.L., et al. 2016 Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. The American naturalist, 188, 379-397.
Höllinger, I., Pennings, P.S. & Hermisson, J. 2019 Polygenic adaptation: from sweeps to subtle frequency shifts. PLoS Genetics, 15, 1-26.
Jacobs, A., Carruthers, M., Yurchenko, A., Gordeeva, N.V., Alekseyev, S.S., Hooker, O., Leong, J.S., et al. 2020 Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish. PLoS Genetics, 16, e1008658.
James, M.E., Allsopp, R.N., Groh, J.S., Avneet, K., Wilkinson, M.J. & Ortiz-Barrientos, D. 2021a Uncovering the genetic architecture of replicated adaptation. SSRN Preprint. https://doi.org/10.2139/ssrn.3981902.
James, M.E., Arenas-Castro, H., Groh, J.S., Allen, S.L., Engelstädter, J. & Ortiz-Barrientos, D. 2021b Highly replicated evolution of parapatric ecotypes. Molecular Biology and Evolution, 38, 4805-4821.
James, M.E., Wilkinson, M.J., Bernal, D.M., Liu, H., North, H.L., Engelstädter, J. & Ortiz-Barrientos, D. 2021c Phenotypic and genotypic parallel evolution in parapatric ecotypes of Senecio. Evolution; international journal of organic evolution, 75, 3115-3131.
Ji, Y., Li, X., Ji, T., Tang, J., Qiu, L., Hu, J., Dong, J., et al. 2020 Gene reuse facilitates rapid radiation and independent adaptation to diverse habitats in the Asian honeybee. Science Advances, 6, eabd3590.
Kanehisa, M. & Goto, S. 2000 KEGG: Kyoto encyclopedia of genes and genomes. Nucleic acids research, 28, 27-30.
Kazakou, E., Dimitrakopoulos, P.G., Baker, A.J.M., Reeves, R.D. & Troumbis, A.Y. 2008 Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol. Rev. Camb. Philos. Soc., 83, 495-508.
Knotek, A., Konečná, V., Wos, G., Požárová, D., Šrámková, G., Bohutínská, M., Zeisek, V., et al. 2020 Parallel alpine differentiation in Arabidopsis arenosa. Frontiers in Plant Science, 11, 1-12.
Kolář, F., Lučanová, M., Vít, P., Urfus, T., Chrtek, J., Fér, T., Ehrendorfer, F. & Suda, J. 2013 Diversity and endemism in deglaciated areas: ploidy, relative genome size and niche differentiation in the Galium pusillum complex (Rubiaceae) in Northern and Central Europe. Annals of Botany, 111, 1095-1108.
Kolář, F., Dortová, M., Lepš, J., Pouzar, M. & Krejčová, A. 2014 Serpentine ecotypic differentiation in a polyploid plant complex: shared tolerance to Mg and Ni stress among di- and tetraploid serpentine populations of. Plant and Soil, 374, 435-447.
Konečná, V., Yant, L. & Kolář, F. 2020 The evolutionary genomics of serpentine adaptation. Frontiers in Plant Science, 11, 574616.
Konečná, V., Bray, S., Vlček, J., Bohutínská, M., Požárová, D., Choudhury, R.R., Bollmann-Giolai, A., et al. 2021 Parallel adaptation in autopolyploid Arabidopsis arenosa is dominated by repeated recruitment of shared alleles. Nature Communications, 12, 4979.
Kruckeberg, A.R. (1951 Intraspecific variability in the response of certain native plant species to serpentine soil. American Journal of Botany, 38, 408-419.
Kruckeberg, A.R. 1954 The ecology of serpentine soils: a symposium. III. Plant species in relation to serpentine soils. Ecology, 35, 267-274.
Lai, Y.T., Yeung, C.K.L., Omland, K.E., Pang, E.L., Hao, Y., Liao, B.Y., Cao, H.F., et al. 2019 Standing genetic variation as the predominant source for adaptation of a songbird. Proceedings of the National Academy of Sciences of the United States of America, 116, 2152-2157.
Láruson, Á.J., Yeaman, S. & Lotterhos, K.E. 2020 The importance of genetic redundancy in evolution. Trends in Ecology and Evolution, 35, 809-822.
Lenormand, T., Roze, D. & Rousset, F. 2009 Stochasticity in evolution. Trends in Ecology and Evolution, 24, 157-165.
Losos, J.B. (2011 Convergence, adaptation, and constraint. Evolution; international journal of organic evolution, 65, 1827-1840.
Lüdecke, D. (2021) sjstats: statistical functions for regression models. R package.
Magalhaes, I.S., Whiting, J.R., D'Agostino, D., Hohenlohe, P.A., Mahmud, M., Bell, M.A., Skúlason, S. & MacColl, A.D.C. 2021 Intercontinental genomic parallelism in multiple three-spined stickleback adaptive radiations. Nature Ecology and Evolution, 5, 251-261.
Morales, H.E., Faria, R., Johannesson, K., Larsson, T., Panova, M., Westram, A.M. & Butlin, R.K. 2019 Genomic architecture of parallel ecological divergence: beyond a single environmental contrast. Science Advances, 5, eaav9963.
Novák, F.A. (1928 Quelques remarques relatives au probleme de la vegetation sur les terrains serpentinques. Preslia, 6, 42-71.
O'Dell, R.E. & Rajakaruna, N. 2011 Intraspecific variation, adaptation, and evolution. Pp. 97-137 in S. Harrison and N. Rajakaruna, eds. Serpentine: evolution and ecology in a model system. University of California Press, Berkeley, CA.
O'Dell, R.E. & Claassen, V.P. 2006 Serpentine and nonserpentine Achillea millefolium accessions differ in serpentine substrate tolerance and response to organic and inorganic amendments. Plant and Soil, 279, 253-269.
Papadopulos, A.S.T., Helmstetter, A.J., Osborne, O.G., Comeault, A.A., Wood, D.P., Straw, E.A., Mason, L., et al. 2021 Rapid parallel adaptation to anthropogenic heavy metal pollution. Molecular Biology and Evolution, 38, 3724-3736.
Preite, V., Sailer, C., Syllwasschy, L., Bray, S., Kraemer, U. & Yant, L. 2019 Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philosophical Transactions of the Royal Society B, 374, 20180243.
R Core Team. (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/.
Rajakaruna, N., Siddiqi, M.Y., Whitton, J., Bohm, B.A. & Glass, A.D.M. 2003 Differential responses to Na+/K+ and Ca2+/Mg2+ in two edaphic races of the Lasthenia californica (Asteraceae) complex: a case for parallel evolution of physiological traits. New Phytologist, 157, 93-103.
Rosenblum, E.B., Parent, C.E. & Brandt, E.E. 2014 The molecular basis of phenotypic convergence. Annual Review of Ecology, Evolution, and Systematics, 45, 203-226.
Sakaguchi, S., Horie, K., Ishikawa, N., Nagano, A.J., Yasugi, M., Kudoh, H. & Ito, M. 2017 Simultaneous evaluation of the effects of geographic, environmental and temporal isolation in ecotypic populations of Solidago virgaurea. New Phytologist, 216, 1268-1280.
Sakaguchi, S., Horie, K., Kimura, T., Nagano, A.J., Isagi, Y. & Ito, M. 2018 Phylogeographic testing of alternative histories of single-origin versus parallel evolution of early flowering serpentine populations of Picris hieracioides L. (Asteraceae) in Japan. Ecological Research, 33, 537-547.
Salmón, P., Jacobs, A., Ahrén, D., Biard, C., Dingemanse, N.J., Dominoni, D.M., Helm, B., et al. 2021 Continent-wide genomic signatures of adaptation to urbanisation in a songbird across Europe. Nature Communications, 12, 2983.
Sambatti, J.B.M. & Rice, K.J. 2006 Local adaptation, patterns of selection, and gene flow in the Californian serpentine sunflower (Helianthus exilis). Evolution; international journal of organic evolution, 60, 696-710.
Savolainen, O., Lascoux, M. & Merilä, J. 2013 Ecological genomics: genes in ecology and ecology in genes. Nature Reviews Genetics, 14, 807-820.
Schmickl, R., Paule, J., Klein, J., Marhold, K. & Koch, M.A. 2012 The evolutionary history of the Arabidopsis arenosa complex: diverse tetraploids mask the Western Carpathian center of species and genetic diversity. PLoS ONE, 7, e42691.
Selby, J.P. & Willis, J.H. 2018 Major QTL controls adaptation to serpentine soils in Mimulus guttatus. Molecular Ecology, 27, 5073-5087.
Shaw, R.G., Geyer, C.J., Wagenius, S., Hangelbroek, H.H. & Etterson, J.R. 2008 Unifying life-history analyses for inference of fitness and population growth. American Naturalist, 172, E35-E47.
Sianta, S.A. & Kay, K.M. 2019 Adaptation and divergence in edaphic specialists and generalists: serpentine soil endemics in the California flora occur in barer serpentine habitats with lower soil calcium levels than serpentine tolerators. American Journal of Botany, 106, 690-703.
Sianta, S.A. & Kay, K.M. 2021 Parallel evolution of phenological isolation across the speciation continuum in serpentine-adapted annul wildflowers. Proceedings of the Royal Society B: Biological Sciences, 288, 20203076.
Stuart, Y.E., Veen, T., Weber, J.N., Hanson, D., Ravinet, M., Lohman, B.K., Thompson, C.J., et al. 2017 Contrasting effects of environment and genetics generate a continuum of parallel evolution. Nature Ecology and Evolution, 1, 1-7.
Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., et al. 2015 STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43, 447-452.
Szukala, A., Lovegrove-Walsh, J., Luqman, H., Fior, S., Wolfe, T., Frajman, B., Schönswetter, P. & Paun, O. 2022 Polygenic routes lead to parallel altitudinal adaptation in Heliosperma pusillum (Caryophyllaceae). Mol. Ecol., https://doi.org/10.1111/mec.16393.
Tang, R. & Luan, S. 2017 Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. Current Opinion in Plant Biology, 39, 97-105.
Trucchi, E., Frajman, B., Haverkamp, T.H.A., Schönswetter, P. & Paun, O. 2017 Genomic analyses suggest parallel ecological divergence in Heliosperma pusillum (Caryophyllaceae). New Phytologist, 216, 267-278.
Turner, T.L., Bourne, E.C., Von Wettberg, E.J., Hu, T.T. & Nuzhdin, S.V. 2010 Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nature Genetics, 42, 260-263.
Veatch-Blohm, M.E., Roche, B.M. & Campbell, M.J. 2013 Evidence for cross-tolerance to nutrient deficiency in three disjunct populations of Arabidopsis lyrata ssp. lyrata in response to substrate calcium to magnesium ratio. PLoS ONE, 8, e63117.
Veatch-Blohm, M.E., Roche, B.M. & Dahl, E.E. 2017 Serpentine populations of Arabidopsis lyrata ssp. lyrata show evidence for local adaptation in response to nickel exposure at germination and during juvenile growth. Environmental and Experimental Botany, 138, 1-9.
Vlamis, J. (1949 Growth of lettuce and barley as influenced by degree of calcium-saturation of soil. Soil Science, 67, 453-466.
Vlamis, J. & Jenny, H. 1948 Calcium deficiency in serpentine soils as revealed by adsorbent technique. Science, 107, 549.
Walker, R.B., Walker, M., Helene & Ashworth, P. 1955 Calcium-magnesium nutrition with special reference to serpentine soils. Plant Physiology, 30, 214-221.
Wang, M., Zhao, Y. & Zhang, B. 2015 Efficient test and visualization of multi-set intersections. Scientific Reports, 5, 1-12.
Weber, A.A.T., Rajkov, J., Smailus, K., Egger, B. & Salzburger, W. 2021 Speciation dynamics and extent of parallel evolution along a lake-stream environmental contrast in African cichlid fishes. Science Advances, 7, 1-21.
Whiting, J.R., Paris, J.R., van der Zee, M.J., Parsons, P.J., Weigel, D. & Fraser, B.A. 2021 Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- And low-predation guppies. PLoS Genetics, 17, 1-29.
Wilkinson, M.J., Roda, F., Walter, G.M., James, M.E., Nipper, R., Walsh, J., Allen, S.L., et al. 2021 Adaptive divergence in shoot gravitropism creates hybrid sterility in an Australian wildflower. Proceedings of the National Academy of Sciences of the United States of America, 118, 1-11.
Wright, K.M., Lloyd, D., Lowry, D.B., Macnair, M.R. & Willis, J.H. 2013 Indirect evolution of hybrid lethality due to linkage with selected locus in Mimulus guttatus. PLoS Biology, 11, e1001497.
Yeaman, S. (2015 Local adaptation by alleles of small effect. American Naturalist, 186, S74-S89.
Yeaman, S., Gerstein, A.C., Hodgins, K.A. & Whitlock, M.C. 2018 Quantifying how constraints limit the diversity of viable routes to adaptation. PLoS Genetics, 14, 1-25.
Zbíral, J., Čižmárová, E., Obdržálková, E., Rychlý, M., Vilamová, V., Srnková, J. & Žalmanová, A. 2016 Jednotné pracovní postupy: analýza půd I. SKZÚZ, Brno, Czech Republic.