• This record comes from PubMed

A companion to the preclinical common data elements for rodent models of pediatric acquired epilepsy: A report of the TASK3-WG1B, Pediatric and Genetic Models Working Group of the ILAE/AES Joint Translational Task Force

. 2022 Aug 11 ; () : . [epub] 20220811

Status Publisher Language English Country United States Media print-electronic

Document type Journal Article

Grant support
NS100064 NINDS NIH HHS - United States
R01 NS091170 NINDS NIH HHS - United States
NS091170 NINDS NIH HHS - United States
KL2TR002317 NCATS NIH HHS - United States
AG067788 NIA NIH HHS - United States

Epilepsy syndromes during the early years of life may be attributed to an acquired insult, such as hypoxic-ischemic injury, infection, status epilepticus, or brain trauma. These conditions are frequently modeled in experimental rodents to delineate mechanisms of epileptogenesis and investigate novel therapeutic strategies. However, heterogeneity and subsequent lack of reproducibility of such models across laboratories is an ongoing challenge to maintain scientific rigor and knowledge advancement. To address this, as part of the TASK3-WG1B Working Group of the International League Against Epilepsy/American Epilepsy Society Joint Translational Task Force, we have developed a series of case report forms (CRFs) to describe common data elements for pediatric acquired epilepsy models in rodents. The "Rodent Models of Pediatric Acquired Epilepsy" Core CRF was designed to capture cohort-general information; while two Specific CRFs encompass physical induction models and chemical induction models, respectively. This companion manuscript describes the key elements of these models and why they are important to be considered and reported consistently. Together, these CRFs provide investigators with the tools to systematically record critical information regarding their chosen model of acquired epilepsy during early life, for improved standardization and transparency across laboratories. These outcomes will support the ultimate goal of such research; that is, to understand the childhood onset-specific biology of epileptogenesis after acquired insults, and translate this knowledge into therapeutics to improve pediatric patient outcomes and minimize the lifetime burden of epilepsy.

See more in PubMed

WHO. Epilepsy: a public health imperative. Geneva: World Health Organization; 2019.

Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon CS, Dykeman J, et al. Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurology. 2017;88(3):296-303.

Kotsopoulos IA, van Merode T, Kessels FG, de Krom MC, Knottnerus JA. Systematic review and meta-analysis of incidence studies of epilepsy and unprovoked seizures. Epilepsia. 2002;43(11):1402-9.

Nordli DR Jr. Epileptic encephalopathies in infants and children. J Clin Neurophysiol. 2012;29(5):420-4.

Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512-21.

Olafsson E, Ludvigsson P, Gudmundsson G, Hesdorffer D, Kjartansson O, Hauser WA. Incidence of unprovoked seizures and epilepsy in Iceland and assessment of the epilepsy syndrome classification: a prospective study. Lancet Neurol. 2005;4(10):627-34.

Harte-Hargrove LC, Galanopoulou AS, French JA, Pitkänen A, Whittemore V, Scharfman HE. Common data elements (CDEs) for preclinical epilepsy research: introduction to CDEs and description of core CDEs. A TASK3 report of the ILAE/AES joint translational task force. Epilepsia Open. 2018;3(Suppl 1):13-23.

Scharfman HE, Galanopoulou AS, French JA, Pitkänen A, Whittemore V, Harte-Hargrove LC. Preclinical common data elements (CDEs) for epilepsy: a joint ILAE/AES and NINDS translational initiative. Epilepsia Open. 2018;3(Suppl 1):9-12.

Perucca P, Scheffer IE. Genetic contributions to acquired epilepsies. Epilepsy Curr. 2020;21(1):5-13.

D'Gama AM, Geng Y, Couto JA, Martin B, Boyle EA, LaCoursiere CM, et al. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann Neurol. 2015;77(4):720-5.

Parrini E, Conti V, Dobyns WB, Guerrini R. Genetic basis of brain malformations. Mol Syndromol. 2016;7(4):220-33.

Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med. 2015;5(6):a022426.

Nunes ML, Esper NB, Franco AR, Radaelli G, Soder RB, Bomfim R, et al. Epilepsy after congenital zika virus infection: EEG and neuroimaging features. Seizure. 2021;84:14-22.

Chen T, Liu G. Long-term outcome of acute central nervous system infection in children. Pediatr Investig. 2018;2(3):155-63.

Gorter JA, van Vliet EA, Dedeurwaerdere S, Buchanan GF, Friedman D, Borges K, et al. A companion to the preclinical common data elements for physiologic data in rodent epilepsy models. A report of the TASK3 Physiology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open. 2018;3(Suppl 1):69-89.

Barker-Haliski M, Harte-Hargrove LC, Ravizza T, Smolders I, Xiao B, Brandt C, et al. A companion to the preclinical common data elements for pharmacologic studies in animal models of seizures and epilepsy. A report of the TASK3 Pharmacology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open. 2018;3(Suppl 1):53-68.

Mazarati A, Jones NC, Galanopoulou AS, Harte-Hargrove LC, Kalynchuk LE, Lenck-Santini PP, et al. A companion to the preclinical common data elements on neurobehavioral comorbidities of epilepsy: a report of the TASK3 behavior working group of the ILAE/AES Joint Translational Task Force. Epilepsia Open. 2018;3(Suppl 1):24-52.

Ono T, Wagenaar J, Giorgi FS, Fabera P, Hanaya R, Jefferys J, et al. A companion to the preclinical common data elements and case report forms for rodent EEG studies. A report of the TASK3 EEG Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open. 2018;3(Suppl 1):90-103.

Akman O, Raol YH, Auvin S, Cortez MA, Kubova H, de Curtis M, et al. Methodologic recommendations and possible interpretations of video-EEG recordings in immature rodents used as experimental controls: a TASK1-WG2 report of the ILAE/AES Joint Translational Task Force. Epilepsia Open. 2018;3(4):437-59.

Kadam SD, White AM, Staley KJ, Dudek FE. Continuous electroencephalographic monitoring with radio-telemetry in a rat model of perinatal hypoxia-ischemia reveals progressive post-stroke epilepsy. J Neurosci. 2010;30(1):404-15.

Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106-107:1-16.

Akman O, Moshé SL, Galanopoulou AS. Sex-specific consequences of early life seizures. Neurobiol Dis. 2014;72(Pt B):153-66.

Giorgi FS, Galanopoulou AS, Moshé SL. Sex dimorphism in seizure-controlling networks. Neurobiol Dis. 2014;72(Pt B):144-52.

Galanopoulou AS, Moshé SL. In search of epilepsy biomarkers in the immature brain: goals, challenges and strategies. Biomark Med. 2011;5(5):615-28.

Thompson KW, Suchomelova L, Wasterlain CG. Treatment of early life status epilepticus: what can we learn from animal models? Epilepsia Open. 2018;3(Suppl 2):169-79.

Katsarou AM, Galanopoulou AS, Moshé SL. Epileptogenesis in neonatal brain. Semin Fetal Neonatal Med. 2018;23(3):159-67.

Christensen J, Pedersen MG, Pedersen CB, Sidenius P, Olsen J, Vestergaard M. Long-term risk of epilepsy after traumatic brain injury in children and young adults: a population-based cohort study. Lancet. 2009;373(9669):1105-10.

Salgueiro-Pereira AR, Duprat F, Pousinha PA, Loucif A, Douchamps V, Regondi C, et al. A two-hit story: seizures and genetic mutation interaction sets phenotype severity in SCN1A epilepsies. Neurobiol Dis. 2019;125:31-44.

Galanopoulou AS, Mowrey WB, Liu W, Li Q, Shandra O, Moshé SL. Preclinical screening for treatments for infantile spasms in the multiple hit rat model of infantile spasms: an update. Neurochem Res. 2017;42(7):1949-61.

Barker-Haliski ML, Löscher W, White HS, Galanopoulou AS. Neuroinflammation in epileptogenesis: insights and translational perspectives from new models of epilepsy. Epilepsia. 2017;58(Suppl 3):39-47.

Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol. 1969;25(3):295-330.

Vernadakis A, Woodbury DM. The developing animal as a model. Epilepsia. 1969;10(2):163-78.

Mareš P, Kubová H. Electrical stimulation-induced models of seizures. In: Pitkanen ASP, Moshe S, editors. Animal models of epilepsy. Cambridge, MA: Academic Press; 2006. p. 153-9.

Löscher W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res. 2002;50(1-2):105-23.

Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73(1):1-60.

Sloviter RS, Damiano BP. Sustained electrical stimulation of the perforant path duplicates kainate-induced electrophysiological effects and hippocampal damage in rats. Neurosci Lett. 1981;24(3):279-84.

Li Q, Jin CL, Xu LS, Zhu-Ge ZB, Yang LX, Liu LY, et al. Histidine enhances carbamazepine action against seizures and improves spatial memory deficits induced by chronic transauricular kindling in rats. Acta Pharmacol Sin. 2005;26(11):1297-302.

Matagne A, Klitgaard H. Validation of corneally kindled mice: a sensitive screening model for partial epilepsy in man. Epilepsy Res. 1998;31(1):59-71.

Sangdee P, Turkanis SA, Karler R. Kindling-like effect induced by repeated corneal electroshock in mice. Epilepsia. 1982;23(5):471-9.

Mazarati AM, Wasterlain CG, Sankar R, Shin D. Self-sustaining status epilepticus after brief electrical stimulation of the perforant path. Brain Res. 1998;801(1-2):251-3.

Brady RD, Casillas-Espinosa PM, Agoston DV, Bertram EH, Kamnaksh A, Semple BD, et al. Modelling traumatic brain injury and posttraumatic epilepsy in rodents. Neurobiol Dis. 2019;123:8-19.

Glushakov AV, Glushakova OY, Doré S, Carney PR, Hayes RL. Animal models of posttraumatic seizures and epilepsy. Methods Mol Biol. 2016;1462:481-519.

Bolkvadze T, Pitkanen A. Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. J Neurotrauma. 2012;29(5):789-812.

Statler KD, Scheerlinck P, Pouliot W, Hamilton M, White HS, Dudek FE. A potential model of pediatric posttraumatic epilepsy. Epilepsy Res. 2009;86:221-3.

Semple BD, O'Brien TJ, Gimlin K, Wright DK, Kim SE, Casillas-Espinosa PM, et al. Interleukin-1 receptor in seizure susceptibility after traumatic injury to the pediatric brain. J Neurosci. 2017;37(33):7864-77.

Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods. 1992;39(3):253-62.

Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, et al. A fluid percussion model of experimental brain injury in the rat. J Neurosurg. 1987;67(1):110-9.

Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E. Mouse closed head injury model induced by a weight-drop device. Nat Protoc. 2009;4(9):1328-37.

Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg. 1994;80(2):291-300.

Cheng J, Gu J, Ma Y, Yang T, Kuang Y, Li B, et al. Development of a rat model for studying blast-induced traumatic brain injury. J Neurol Sci. 2010;294(1-2):23-8.

Rubovitch V, Ten-Bosch M, Zohar O, Harrison CR, Tempel-Brami C, Stein E, et al. A mouse model of blast-induced mild traumatic brain injury. Exp Neurol. 2011;232(2):280-9.

Pleasant JM, Carlson SW, Mao H, Scheff SW, Yang KH, Saatman KE. Rate of neurodegeneration in the mouse controlled cortical impact model is influenced by impactor tip shape: implications for mechanistic and therapeutic studies. J Neurotrauma. 2011;28(11):2245-62.

Skotak M, Townsend MT, Ramarao KV, Chandra N. A comprehensive review of experimental rodent models of repeated blast TBI. Front Neurol. 2019;10:1015.

Balduini W, Carloni S, Mazzoni E, Cimino M. New therapeutic strategies in perinatal stroke. Curr Drug Targets CNS Neurol Disord. 2004;3(4):315-23.

Feyissa AM, Hasan TF, Meschia JF. Stroke-related epilepsy. Eur J Neurol. 2019;26(1):18-e3.

Brima T, Otáhal J, Mareš P. Increased susceptibility to pentetrazol-induced seizures in developing rats after cortical photothrombotic ischemic stroke at P7. Brain Res. 2013;1507:146-53.

Tsuji M, Ohshima M, Taguchi A, Kasahara Y, Ikeda T, Matsuyama T. A novel reproducible model of neonatal stroke in mice: comparison with a hypoxia-ischemia model. Exp Neurol. 2013;247:218-25.

Vollmer B. Severe neonatal hypoxic-ischaemic brain injury: still an important cause of infantile spasms. Dev Med Child Neurol. 2020;62(1):9.

Xu Q, Chau V, Sanguansermsri C, Muir KE, Tam EWY, Miller SP, et al. Pattern of brain injury predicts long-term epilepsy following neonatal encephalopathy. J Child Neurol. 2019;34(4):199-209.

Ala-Kurikka T, Pospelov A, Summanen M, Alafuzoff A, Kurki S, Voipio J, et al. A physiologically validated rat model of term birth asphyxia with seizure generation after, not during, brain hypoxia. Epilepsia. 2021;62(4):908-19.

Justice JA, Sanchez RM. A rat model of perinatal seizures provoked by global hypoxia. Methods Mol Biol. 2018;1717:155-9.

Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981;9(2):131-41.

Mohammed HS, Aboul Ezz HS, Sayed HM, Ali MA. Electroencephalographic and biochemical long-lasting abnormalities in animal model of febrile seizure. Biochim Biophys Acta Mol Basis Dis. 2017;1863(9):2120-5.

Dubé CM, Brewster AL, Baram TZ. Febrile seizures: mechanisms and relationship to epilepsy. Brain Dev. 2009;31(5):366-71.

Lemmens EM, Aendekerk B, Schijns OE, Blokland A, Beuls EA, Hoogland G. Long-term behavioral outcome after early-life hyperthermia-induced seizures. Epilepsy Behav. 2009;14(2):309-15.

Eun BL, Abraham J, Mlsna L, Kim MJ, Koh S. Lipopolysaccharide potentiates hyperthermia-induced seizures. Brain Behav. 2015;5(8):e00348.

Suchomelova L, Lopez-Meraz ML, Niquet J, Kubova H, Wasterlain CG. Hyperthermia aggravates status epilepticus-induced epileptogenesis and neuronal loss in immature rats. Neuroscience. 2015;305:209-24.

Hanna GR, Stalmaster RM. Cortical epileptic lesions produced by freezing. Neurology. 1973;23(9):918-25.

Shaker T, Bernier A, Carmant L. Focal cortical dysplasia in childhood epilepsy. Semin Pediatr Neurol. 2016;23(2):108-19.

Jacobs KM, Gutnick MJ, Prince DA. Hyperexcitability in a model of cortical maldevelopment. Cereb Cortex. 1996;6(3):514-23.

Mareš P, Velišek L. N-methyl-d-aspartate (NMDA)-induced seizures in developing rats. Dev Brain Res. 1992;65(2):185-9.

Velisek L, Jehle K, Asche S, Veliskova J. Model of infantile spasms induced by N-methyl-d-aspartic acid in prenatally impaired brain. Ann Neurol. 2007;61(2):109-19.

Kubova H, Mares P. Vigabatrin but not valproate prevents development of age-specific flexion seizures induced by N-methyl-d-aspartate (NMDA) in immature rats. Epilepsia. 2010;51(3):469-72.

Stafstrom CE, Sasaki-Adams DM. NMDA-induced seizures in developing rats cause long-term learning impairment and increased seizure susceptibility. Epilepsy Res. 2003;53(1):129-37.

Kábová R, Liptáková S, Šlamberová R, Pometlová M, Velíšek L. Age-specific N-methyl-d-aspartate-induced seizures: perspectives for the West syndrome model. Epilepsia. 1999;40(10):1357-69.

Cortez MA, Shen L, Wu Y, Aleem IS, Trepanier CH, Sadeghnia HR, et al. Infantile spasms and down syndrome: a new animal model. Pediatr Res. 2009;65(5):499-503.

Chachua T, Yum MS, Veliskova J, Velisek L. Validation of the rat model of cryptogenic infantile spasms. Epilepsia. 2011;52(9):1666-77.

Yum MS, Chachua T, Veliskova J, Velisek L. Prenatal stress promotes development of spasms in infant rats. Epilepsia. 2012;53(3):e46-9.

Scantlebury MH, Galanopoulou AS, Chudomelova L, Raffo E, Betancourth D, Moshé SL. A model of symptomatic infantile spasms syndrome. Neurobiol Dis. 2010;37(3):604-12.

Lee CL, Frost JD Jr, Swann JW, Hrachovy RA. A new animal model of infantile spasms with unprovoked persistent seizures. Epilepsia. 2008;49(2):298-307.

Rensing N, Johnson KJ, Foutz TJ, Friedman JL, Galindo R, Wong M. Early developmental electroencephalography abnormalities, neonatal seizures, and induced spasms in a mouse model of tuberous sclerosis complex. Epilepsia. 2020;61(5):879-91.

Nardou R, Ferrari DC, Ben-Ari Y. Mechanisms and effects of seizures in the immature brain. Semin Fetal Neonatal Med. 2013;18:175-84.

Kubová H. Experimental models of epileptogenesis. In: Wang CSW Jr, editor. Developmental neurotoxicology research: principles, models, techniques, strategies, and mechanisms. Hoboken, NJ: Wiley & Sons, Inc.; 2011. p. 581-601.

Tremblay E, Nitecka L, Berger ML, Ben-Ari Y. Maturation of kainic acid seizure-brain damage syndrome in the rat. I. Clinical, electrographic and metabolic observations. Neuroscience. 1984;13(4):1051-72.

Albala BJ, Moshé SL, Okada R. Kainic-acid-induced seizures: a developmental study. Dev Brain Res. 1984;13(1):139-48.

Stafstrom CE, Thompson JL, Holmes GL. Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Dev Brain Res. 1992;65(2):227-36.

Hirsch E, Baram TZ, Snead OC. Ontogenic study of lithium-pilocarpine-induced status epilepticus in rats. Brain Res. 1992;583(1):120-6.

Priel MR, dos Santos NF, Cavalheiro EA. Developmental aspects of the pilocarpine model of epilepsy. Epilepsy Res. 1996;26(1):115-21.

Sankar R, Shin DH, Liu H, Mazarati A, Pereira de Vasconcelos A, Wasterlain CG. Patterns of status epilepticus-induced neuronal injury during development and long-term consequences. J Neurosci. 1998;18(20):8382-93.

Reinhard JF, Reinhard JF. 3-Experimental evaluation of anticonvulsants. In: Vida JA, editor. Medicinal chemistry. Vol. 15. New York: Elsevier; 1977. p. 57-111.

Swinyard EA, Woodhead JH, White HS. General principles. Experimental selection, quantification, and evaluation of anticonvulsants. In: Levy R, Mattson R, Meldrum B, Penry JK, Dreifuss FE, editors. Antiepileptic Drugs. 3rd ed. New York: Raven Press, Ltd.; 1989. p. 85-102.

Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20(5):359-68.

Sperber EF, Moshé SL. Age-related differences in seizure susceptibility to flurothyl. Dev Brain Res. 1988;39(2):295-7.

Lee CL, Hrachovy RA, Smith KL, Frost JD Jr, Swann JW. Tetanus toxin-induced seizures in infant rats and their effects on hippocampal excitability in adulthood. Brain Res. 1995;677(1):97-109.

Baram TZ, Schultz L. Corticotropin-releasing hormone is a rapid and potent convulsant in the infant rat. Dev Brain Res. 1991;61(1):97-101.

de Feo MR, Mecarelli O, Ricci GF. Bicuculline- and allylglycine-induced epilepsy in developing rats. Exp Neurol. 1985;90(2):411-21.

Kubová H, Folbergrová J, Mareš P. Seizures induced by homocysteine in rats during ontogenesis. Epilepsia. 1995;36(8):750-6.

Turski WA, Cavalheiro EA, Bortolotto ZA, Mello LM, Schwarz M, Turski L. Seizures produced by pilocarpine in mice: a behavioral, electroencephalographic and morphological analysis. Brain Res. 1984;321(2):237-53.

Ahlers FS, Benros ME, Dreier JW, Christensen J. Infections and risk of epilepsy in children and young adults: a nationwide study. Epilepsia. 2019;60(2):275-83.

Vezzani A, Fujinami RS, White HS, Preux PM, Blumcke I, Sander JW, et al. Infections, inflammation and epilepsy. Acta Neuropathol. 2016;131(2):211-34.

Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun. 2012;26(4):607-16.

Pineda E, Shin D, You SJ, Auvin S, Sankar R, Mazarati A. Maternal immune activation promotes hippocampal kindling epileptogenesis in mice. Ann Neurol. 2013;74(1):11-9.

Beers DR, Henkel JS, Schaefer DC, Rose JW, Stroop WG. Neuropathology of herpes simplex virus encephalitis in a rat seizure model. J Neuropathol Exp Neurol. 1993;52(3):241-52.

Solbrig MV, Adrian R, Chang DY, Perng G-C. Viral risk factor for seizures: pathobiology of dynorphin in herpes simplex viral (HSV-1) seizures in an animal model. Neurobiol Dis. 2006;23(3):612-20.

Wu HM, Huang CC, Chen SH, Liang YC, Tsai JJ, Hsieh CL, et al. Herpes simplex virus type 1 inoculation enhances hippocampal excitability and seizure susceptibility in mice. Eur J Neurosci. 2003;18(12):3294-304.

Wu HM, Liang YC, Chen SH, Huang CC, Chen SH, Tsai JJ, et al. Valacyclovir treatment ameliorates the persistently increased pentylenetetrazol-induced seizure susceptibility in mice with herpes simplex virus type 1 infection. Exp Neurol. 2004;189(1):66-77.

Chen SF, Huang CC, Wu HM, Chen SH, Liang YC, Hsu KS. Seizure, neuron loss, and mossy fiber sprouting in herpes simplex virus type 1-infected organotypic hippocampal cultures. Epilepsia. 2004;45(4):322-32.

Stroop WG, Schaefer DC. Neurovirulence of two clonally related herpes simplex virus type 1 strains in a rabbit seizure model. J Neuropathol Exp Neurol. 1989;48(2):171-83.

Stringer JL. Chapter 41-Models available for infection-induced seizures. In: Pitkänen A, Schwartzkroin PA, Moshé SL, editors. Models of seizures and epilepsy. Burlington: Academic Press; 2006. p. 521-6.

Verastegui MR, Mejia A, Clark T, Gavidia CM, Mamani J, Ccopa F, et al. Novel rat model for neurocysticercosis using taenia solium. Am J Pathol. 2015;185(8):2259-68.

Ronen GM, Streiner DL, Rosenbaum P. Health-related quality of life in childhood epilepsy: moving beyond ‘seizure control with minimal adverse effects’. Health Qual Life Outcomes. 2003;1:36.

Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412.

Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature. 2012;490(7419):187-91.

Galanopoulou AS, Buckmaster PS, Staley KJ, Moshé SL, Perucca E, Engel J Jr, et al. Identification of new epilepsy treatments: issues in preclinical methodology. Epilepsia. 2012;53(3):571-82.

Galanopoulou AS, Kokaia M, Loeb JA, Nehlig A, Pitkänen A, Rogawski MA, et al. Epilepsy therapy development: technical and methodologic issues in studies with animal models. Epilepsia. 2013;54(Suppl 4):13-23.

Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMJ Open Sci. 2020;4(1):e100115.

Lidster K, Jefferys JG, Blümcke I, Crunelli V, Flecknell P, Frenguelli BG, et al. Opportunities for improving animal welfare in rodent models of epilepsy and seizures. J Neurosci Methods. 2016;260:2-25.

Carbone L. Open transparent communication about animals in laboratories: dialog for multiple voices and multiple audiences. Animals. 2021;11(2):368.

Kirschstein T, Köhling R. Animal models of tumour-associated epilepsy. J Neurosci Methods. 2016;260:109-17.

Newest 20 citations...

See more in
Medvik | PubMed

The outcome of early life status epilepticus-lessons from laboratory animals

. 2023 May ; 8 Suppl 1 (Suppl 1) : S90-S109. [epub] 20221109

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...