A companion to the preclinical common data elements for rodent models of pediatric acquired epilepsy: A report of the TASK3-WG1B, Pediatric and Genetic Models Working Group of the ILAE/AES Joint Translational Task Force
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
ANR-11-LABX-0015-01
Laboratory of Excellence "Ion Channel Science and Therapeutics"
ANR-20-RAR4-0001-01
EJPRD
U54 NS100064
NINDS NIH HHS - United States
1141347
National Health and Medical Research Council
ANR-15-IDEX-01
IDEX UCA-Jedi
NS100064
NINDS NIH HHS - United States
NS091170
NINDS NIH HHS - United States
KL2TR002317
NCATS NIH HHS - United States
R01 AG067788
NIA NIH HHS - United States
W81XWH2010848
U.S. Department of Defense
W81XWH-18-1-0612
U.S. Department of Defense
10915693
National Health and Medical Research Council
AG067788
NIA NIH HHS - United States
R01 NS091170
NINDS NIH HHS - United States
KL2 TR002317
NCATS NIH HHS - United States
PubMed
35950641
PubMed Central
PMC12375983
DOI
10.1002/epi4.12641
Knihovny.cz E-zdroje
- Klíčová slova
- brain injury, hypoxic ischemic injury, induction, infantile spasms, seizure, status epilepticus,
- MeSH
- datové prvky * MeSH
- dítě MeSH
- epilepsie * genetika etiologie MeSH
- hlodavci MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- myši MeSH
- poradní výbory MeSH
- translační biomedicínský výzkum * metody MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Epilepsy syndromes during the early years of life may be attributed to an acquired insult, such as hypoxic-ischemic injury, infection, status epilepticus, or brain trauma. These conditions are frequently modeled in experimental rodents to delineate mechanisms of epileptogenesis and investigate novel therapeutic strategies. However, heterogeneity and subsequent lack of reproducibility of such models across laboratories is an ongoing challenge to maintain scientific rigor and knowledge advancement. To address this, as part of the TASK3-WG1B Working Group of the International League Against Epilepsy/American Epilepsy Society Joint Translational Task Force, we have developed a series of case report forms (CRFs) to describe common data elements for pediatric acquired epilepsy models in rodents. The "Rodent Models of Pediatric Acquired Epilepsy" Core CRF was designed to capture cohort-general information; while two Specific CRFs encompass physical induction models and chemical induction models, respectively. This companion manuscript describes the key elements of these models and why they are important to be considered and reported consistently. Together, these CRFs provide investigators with the tools to systematically record critical information regarding their chosen model of acquired epilepsy during early life, for improved standardization and transparency across laboratories. These outcomes will support the ultimate goal of such research; that is, to understand the childhood onset-specific biology of epileptogenesis after acquired insults, and translate this knowledge into therapeutics to improve pediatric patient outcomes and minimize the lifetime burden of epilepsy.
Department of Medicine The University of Melbourne Parkville Victoria Australia
Department of Neurology Alfred Health Prahran Victoria Australia
Department of Neuroscience Monash University Melbourne Victoria Australia
Department of Pharmacy School of Pharmacy University of Washington Seattle Washington USA
Institut Universitaire de France Paris France
Institute of Physiology Academy of Sciences of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
WHO . Epilepsy: a public health imperative. Geneva: World Health Organization; 2019.
Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon CS, Dykeman J, et al. Prevalence and incidence of epilepsy: a systematic review and meta‐analysis of international studies. Neurology. 2017;88(3):296–303. PubMed PMC
Kotsopoulos IA, van Merode T, Kessels FG, de Krom MC, Knottnerus JA. Systematic review and meta‐analysis of incidence studies of epilepsy and unprovoked seizures. Epilepsia. 2002;43(11):1402–9. PubMed
Nordli DR Jr. Epileptic encephalopathies in infants and children. J Clin Neurophysiol. 2012;29(5):420–4. PubMed
Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512–21. PubMed PMC
Olafsson E, Ludvigsson P, Gudmundsson G, Hesdorffer D, Kjartansson O, Hauser WA. Incidence of unprovoked seizures and epilepsy in Iceland and assessment of the epilepsy syndrome classification: a prospective study. Lancet Neurol. 2005;4(10):627–34. PubMed
Harte‐Hargrove LC, Galanopoulou AS, French JA, Pitkänen A, Whittemore V, Scharfman HE. Common data elements (CDEs) for preclinical epilepsy research: introduction to CDEs and description of core CDEs. A TASK3 report of the ILAE/AES joint translational task force. Epilepsia Open. 2018;3(Suppl 1):13–23. PubMed PMC
Scharfman HE, Galanopoulou AS, French JA, Pitkänen A, Whittemore V, Harte‐Hargrove LC. Preclinical common data elements (CDEs) for epilepsy: a joint ILAE/AES and NINDS translational initiative. Epilepsia Open. 2018;3(Suppl 1):9–12. PubMed PMC
Perucca P, Scheffer IE. Genetic contributions to acquired epilepsies. Epilepsy Curr. 2020;21(1):5–13. PubMed PMC
D'Gama AM, Geng Y, Couto JA, Martin B, Boyle EA, LaCoursiere CM, et al. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann Neurol. 2015;77(4):720–5. PubMed PMC
Parrini E, Conti V, Dobyns WB, Guerrini R. Genetic basis of brain malformations. Mol Syndromol. 2016;7(4):220–33. PubMed PMC
Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med. 2015;5(6):a022426. PubMed PMC
Nunes ML, Esper NB, Franco AR, Radaelli G, Soder RB, Bomfim R, et al. Epilepsy after congenital zika virus infection: EEG and neuroimaging features. Seizure. 2021;84:14–22. PubMed
Chen T, Liu G. Long‐term outcome of acute central nervous system infection in children. Pediatr Investig. 2018;2(3):155–63. PubMed PMC
Gorter JA, van Vliet EA, Dedeurwaerdere S, Buchanan GF, Friedman D, Borges K, et al. A companion to the preclinical common data elements for physiologic data in rodent epilepsy models. A report of the TASK3 Physiology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open. 2018;3(Suppl 1):69–89. PubMed PMC
Barker‐Haliski M, Harte‐Hargrove LC, Ravizza T, Smolders I, Xiao B, Brandt C, et al. A companion to the preclinical common data elements for pharmacologic studies in animal models of seizures and epilepsy. A report of the TASK3 Pharmacology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open. 2018;3(Suppl 1):53–68. PubMed PMC
Mazarati A, Jones NC, Galanopoulou AS, Harte‐Hargrove LC, Kalynchuk LE, Lenck‐Santini PP, et al. A companion to the preclinical common data elements on neurobehavioral comorbidities of epilepsy: a report of the TASK3 behavior working group of the ILAE/AES Joint Translational Task Force. Epilepsia Open. 2018;3(Suppl 1):24–52. PubMed PMC
Ono T, Wagenaar J, Giorgi FS, Fabera P, Hanaya R, Jefferys J, et al. A companion to the preclinical common data elements and case report forms for rodent EEG studies. A report of the TASK3 EEG Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open. 2018;3(Suppl 1):90–103. PubMed PMC
Akman O, Raol YH, Auvin S, Cortez MA, Kubova H, de Curtis M, et al. Methodologic recommendations and possible interpretations of video‐EEG recordings in immature rodents used as experimental controls: a TASK1‐WG2 report of the ILAE/AES Joint Translational Task Force. Epilepsia Open. 2018;3(4):437–59. PubMed PMC
Kadam SD, White AM, Staley KJ, Dudek FE. Continuous electroencephalographic monitoring with radio‐telemetry in a rat model of perinatal hypoxia–ischemia reveals progressive post‐stroke epilepsy. J Neurosci. 2010;30(1):404–15. PubMed PMC
Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble‐Haeusslein LJ. Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106–107:1–16. PubMed PMC
Akman O, Moshé SL, Galanopoulou AS. Sex‐specific consequences of early life seizures. Neurobiol Dis. 2014;72(Pt B):153–66. PubMed PMC
Giorgi FS, Galanopoulou AS, Moshé SL. Sex dimorphism in seizure‐controlling networks. Neurobiol Dis. 2014;72(Pt B):144–52. PubMed PMC
Galanopoulou AS, Moshé SL. In search of epilepsy biomarkers in the immature brain: goals, challenges and strategies. Biomark Med. 2011;5(5):615–28. PubMed PMC
Thompson KW, Suchomelova L, Wasterlain CG. Treatment of early life status epilepticus: what can we learn from animal models? Epilepsia Open. 2018;3(Suppl 2):169–79. PubMed PMC
Katsarou AM, Galanopoulou AS, Moshé SL. Epileptogenesis in neonatal brain. Semin Fetal Neonatal Med. 2018;23(3):159–67. PubMed PMC
Christensen J, Pedersen MG, Pedersen CB, Sidenius P, Olsen J, Vestergaard M. Long‐term risk of epilepsy after traumatic brain injury in children and young adults: a population‐based cohort study. Lancet. 2009;373(9669):1105–10. PubMed
Salgueiro‐Pereira AR, Duprat F, Pousinha PA, Loucif A, Douchamps V, Regondi C, et al. A two‐hit story: seizures and genetic mutation interaction sets phenotype severity in SCN1A epilepsies. Neurobiol Dis. 2019;125:31–44. PubMed
Galanopoulou AS, Mowrey WB, Liu W, Li Q, Shandra O, Moshé SL. Preclinical screening for treatments for infantile spasms in the multiple hit rat model of infantile spasms: an update. Neurochem Res. 2017;42(7):1949–61. PubMed PMC
Barker‐Haliski ML, Löscher W, White HS, Galanopoulou AS. Neuroinflammation in epileptogenesis: insights and translational perspectives from new models of epilepsy. Epilepsia. 2017;58(Suppl 3):39–47. PubMed PMC
Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol. 1969;25(3):295–330. PubMed
Vernadakis A, Woodbury DM. The developing animal as a model. Epilepsia. 1969;10(2):163–78. PubMed
Mareš P, Kubová H. Electrical stimulation‐induced models of seizures. In: Pitkanen ASP, Moshe S, editors. Animal models of epilepsy. Cambridge, MA: Academic Press; 2006. p. 153–9.
Löscher W. Animal models of epilepsy for the development of antiepileptogenic and disease‐modifying drugs. A comparison of the pharmacology of kindling and post‐status epilepticus models of temporal lobe epilepsy. Epilepsy Res. 2002;50(1–2):105–23. PubMed
Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73(1):1–60. PubMed
Sloviter RS, Damiano BP. Sustained electrical stimulation of the perforant path duplicates kainate‐induced electrophysiological effects and hippocampal damage in rats. Neurosci Lett. 1981;24(3):279–84. PubMed
Li Q, Jin CL, Xu LS, Zhu‐Ge ZB, Yang LX, Liu LY, et al. Histidine enhances carbamazepine action against seizures and improves spatial memory deficits induced by chronic transauricular kindling in rats. Acta Pharmacol Sin. 2005;26(11):1297–302. PubMed
Matagne A, Klitgaard H. Validation of corneally kindled mice: a sensitive screening model for partial epilepsy in man. Epilepsy Res. 1998;31(1):59–71. PubMed
Sangdee P, Turkanis SA, Karler R. Kindling‐like effect induced by repeated corneal electroshock in mice. Epilepsia. 1982;23(5):471–9. PubMed
Mazarati AM, Wasterlain CG, Sankar R, Shin D. Self‐sustaining status epilepticus after brief electrical stimulation of the perforant path. Brain Res. 1998;801(1–2):251–3. PubMed
Brady RD, Casillas‐Espinosa PM, Agoston DV, Bertram EH, Kamnaksh A, Semple BD, et al. Modelling traumatic brain injury and posttraumatic epilepsy in rodents. Neurobiol Dis. 2019;123:8–19. PubMed PMC
Glushakov AV, Glushakova OY, Doré S, Carney PR, Hayes RL. Animal models of posttraumatic seizures and epilepsy. Methods Mol Biol. 2016;1462:481–519. PubMed PMC
Bolkvadze T, Pitkanen A. Development of post‐traumatic epilepsy after controlled cortical impact and lateral fluid‐percussion‐induced brain injury in the mouse. J Neurotrauma. 2012;29(5):789–812. PubMed
Statler KD, Scheerlinck P, Pouliot W, Hamilton M, White HS, Dudek FE. A potential model of pediatric posttraumatic epilepsy. Epilepsy Res. 2009;86:221–3. PubMed PMC
Semple BD, O'Brien TJ, Gimlin K, Wright DK, Kim SE, Casillas‐Espinosa PM, et al. Interleukin‐1 receptor in seizure susceptibility after traumatic injury to the pediatric brain. J Neurosci. 2017;37(33):7864–77. PubMed PMC
Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods. 1992;39(3):253–62. PubMed
Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, et al. A fluid percussion model of experimental brain injury in the rat. J Neurosurg. 1987;67(1):110–9. PubMed
Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E. Mouse closed head injury model induced by a weight‐drop device. Nat Protoc. 2009;4(9):1328–37. PubMed
Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg. 1994;80(2):291–300. PubMed
Cheng J, Gu J, Ma Y, Yang T, Kuang Y, Li B, et al. Development of a rat model for studying blast‐induced traumatic brain injury. J Neurol Sci. 2010;294(1–2):23–8. PubMed
Rubovitch V, Ten‐Bosch M, Zohar O, Harrison CR, Tempel‐Brami C, Stein E, et al. A mouse model of blast‐induced mild traumatic brain injury. Exp Neurol. 2011;232(2):280–9. PubMed PMC
Pleasant JM, Carlson SW, Mao H, Scheff SW, Yang KH, Saatman KE. Rate of neurodegeneration in the mouse controlled cortical impact model is influenced by impactor tip shape: implications for mechanistic and therapeutic studies. J Neurotrauma. 2011;28(11):2245–62. PubMed PMC
Skotak M, Townsend MT, Ramarao KV, Chandra N. A comprehensive review of experimental rodent models of repeated blast TBI. Front Neurol. 2019;10:1015. PubMed PMC
Balduini W, Carloni S, Mazzoni E, Cimino M. New therapeutic strategies in perinatal stroke. Curr Drug Targets CNS Neurol Disord. 2004;3(4):315–23. PubMed
Feyissa AM, Hasan TF, Meschia JF. Stroke‐related epilepsy. Eur J Neurol. 2019;26(1):18‐e3. PubMed
Brima T, Otáhal J, Mareš P. Increased susceptibility to pentetrazol‐induced seizures in developing rats after cortical photothrombotic ischemic stroke at P7. Brain Res. 2013;1507:146–53. PubMed
Tsuji M, Ohshima M, Taguchi A, Kasahara Y, Ikeda T, Matsuyama T. A novel reproducible model of neonatal stroke in mice: comparison with a hypoxia‐ischemia model. Exp Neurol. 2013;247:218–25. PubMed
Vollmer B. Severe neonatal hypoxic‐ischaemic brain injury: still an important cause of infantile spasms. Dev Med Child Neurol. 2020;62(1):9. PubMed
Xu Q, Chau V, Sanguansermsri C, Muir KE, Tam EWY, Miller SP, et al. Pattern of brain injury predicts long‐term epilepsy following neonatal encephalopathy. J Child Neurol. 2019;34(4):199–209. PubMed
Ala‐Kurikka T, Pospelov A, Summanen M, Alafuzoff A, Kurki S, Voipio J, et al. A physiologically validated rat model of term birth asphyxia with seizure generation after, not during, brain hypoxia. Epilepsia. 2021;62(4):908–19. PubMed PMC
Justice JA, Sanchez RM. A rat model of perinatal seizures provoked by global hypoxia. Methods Mol Biol. 2018;1717:155–9. PubMed
Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic‐ischemic brain damage in the rat. Ann Neurol. 1981;9(2):131–41. PubMed
Mohammed HS, Aboul Ezz HS, Sayed HM, Ali MA. Electroencephalographic and biochemical long‐lasting abnormalities in animal model of febrile seizure. Biochim Biophys Acta Mol Basis Dis. 2017;1863(9):2120–5. PubMed
Dubé CM, Brewster AL, Baram TZ. Febrile seizures: mechanisms and relationship to epilepsy. Brain Dev. 2009;31(5):366–71. PubMed PMC
Lemmens EM, Aendekerk B, Schijns OE, Blokland A, Beuls EA, Hoogland G. Long‐term behavioral outcome after early‐life hyperthermia‐induced seizures. Epilepsy Behav. 2009;14(2):309–15. PubMed
Eun BL, Abraham J, Mlsna L, Kim MJ, Koh S. Lipopolysaccharide potentiates hyperthermia‐induced seizures. Brain Behav. 2015;5(8):e00348. PubMed PMC
Suchomelova L, Lopez‐Meraz ML, Niquet J, Kubova H, Wasterlain CG. Hyperthermia aggravates status epilepticus‐induced epileptogenesis and neuronal loss in immature rats. Neuroscience. 2015;305:209–24. PubMed
Hanna GR, Stalmaster RM. Cortical epileptic lesions produced by freezing. Neurology. 1973;23(9):918–25. PubMed
Shaker T, Bernier A, Carmant L. Focal cortical dysplasia in childhood epilepsy. Semin Pediatr Neurol. 2016;23(2):108–19. PubMed
Jacobs KM, Gutnick MJ, Prince DA. Hyperexcitability in a model of cortical maldevelopment. Cereb Cortex. 1996;6(3):514–23. PubMed
Mareš P, Velišek L. N‐methyl‐d‐aspartate (NMDA)‐induced seizures in developing rats. Dev Brain Res. 1992;65(2):185–9. PubMed
Velisek L, Jehle K, Asche S, Veliskova J. Model of infantile spasms induced by N‐methyl‐d‐aspartic acid in prenatally impaired brain. Ann Neurol. 2007;61(2):109–19. PubMed
Kubova H, Mares P. Vigabatrin but not valproate prevents development of age‐specific flexion seizures induced by N‐methyl‐d‐aspartate (NMDA) in immature rats. Epilepsia. 2010;51(3):469–72. PubMed
Stafstrom CE, Sasaki‐Adams DM. NMDA‐induced seizures in developing rats cause long‐term learning impairment and increased seizure susceptibility. Epilepsy Res. 2003;53(1):129–37. PubMed
Kábová R, Liptáková S, Šlamberová R, Pometlová M, Velíšek L. Age‐specific N‐methyl‐d‐aspartate—induced seizures: perspectives for the West syndrome model. Epilepsia. 1999;40(10):1357–69. PubMed
Cortez MA, Shen L, Wu Y, Aleem IS, Trepanier CH, Sadeghnia HR, et al. Infantile spasms and down syndrome: a new animal model. Pediatr Res. 2009;65(5):499–503. PubMed
Chachua T, Yum MS, Veliskova J, Velisek L. Validation of the rat model of cryptogenic infantile spasms. Epilepsia. 2011;52(9):1666–77. PubMed PMC
Yum MS, Chachua T, Veliskova J, Velisek L. Prenatal stress promotes development of spasms in infant rats. Epilepsia. 2012;53(3):e46‐9. PubMed PMC
Scantlebury MH, Galanopoulou AS, Chudomelova L, Raffo E, Betancourth D, Moshé SL. A model of symptomatic infantile spasms syndrome. Neurobiol Dis. 2010;37(3):604–12. PubMed PMC
Lee CL, Frost JD Jr, Swann JW, Hrachovy RA. A new animal model of infantile spasms with unprovoked persistent seizures. Epilepsia. 2008;49(2):298–307. PubMed
Rensing N, Johnson KJ, Foutz TJ, Friedman JL, Galindo R, Wong M. Early developmental electroencephalography abnormalities, neonatal seizures, and induced spasms in a mouse model of tuberous sclerosis complex. Epilepsia. 2020;61(5):879–91. PubMed PMC
Nardou R, Ferrari DC, Ben‐Ari Y. Mechanisms and effects of seizures in the immature brain. Semin Fetal Neonatal Med. 2013;18:175–84. PubMed
Kubová H. Experimental models of epileptogenesis. In: Wang CSW Jr, editor. Developmental neurotoxicology research: principles, models, techniques, strategies, and mechanisms. Hoboken, NJ: Wiley & Sons, Inc.; 2011. p. 581–601.
Tremblay E, Nitecka L, Berger ML, Ben‐Ari Y. Maturation of kainic acid seizure‐brain damage syndrome in the rat. I. Clinical, electrographic and metabolic observations. Neuroscience. 1984;13(4):1051–72. PubMed
Albala BJ, Moshé SL, Okada R. Kainic‐acid‐induced seizures: a developmental study. Dev Brain Res. 1984;13(1):139–48. PubMed
Stafstrom CE, Thompson JL, Holmes GL. Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Dev Brain Res. 1992;65(2):227–36. PubMed
Hirsch E, Baram TZ, Snead OC. Ontogenic study of lithium‐pilocarpine‐induced status epilepticus in rats. Brain Res. 1992;583(1):120–6. PubMed
Priel MR, dos Santos NF, Cavalheiro EA. Developmental aspects of the pilocarpine model of epilepsy. Epilepsy Res. 1996;26(1):115–21. PubMed
Sankar R, Shin DH, Liu H, Mazarati A, Pereira de Vasconcelos A, Wasterlain CG. Patterns of status epilepticus‐induced neuronal injury during development and long‐term consequences. J Neurosci. 1998;18(20):8382–93. PubMed PMC
Reinhard JF, Reinhard JF. 3—Experimental evaluation of anticonvulsants. In: Vida JA, editor. Medicinal chemistry. Vol. 15. New York: Elsevier; 1977. p. 57–111.
Swinyard EA, Woodhead JH, White HS. General principles. Experimental selection, quantification, and evaluation of anticonvulsants. In: Levy R, Mattson R, Meldrum B, Penry JK, Dreifuss FE, editors. Antiepileptic Drugs. 3rd ed. New York: Raven Press, Ltd.; 1989. p. 85–102.
Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20(5):359–68. PubMed
Sperber EF, Moshé SL. Age‐related differences in seizure susceptibility to flurothyl. Dev Brain Res. 1988;39(2):295–7. PubMed
Lee CL, Hrachovy RA, Smith KL, Frost JD Jr, Swann JW. Tetanus toxin‐induced seizures in infant rats and their effects on hippocampal excitability in adulthood. Brain Res. 1995;677(1):97–109. PubMed
Baram TZ, Schultz L. Corticotropin‐releasing hormone is a rapid and potent convulsant in the infant rat. Dev Brain Res. 1991;61(1):97–101. PubMed PMC
de Feo MR, Mecarelli O, Ricci GF. Bicuculline‐ and allylglycine‐induced epilepsy in developing rats. Exp Neurol. 1985;90(2):411–21. PubMed
Kubová H, Folbergrová J, Mareš P. Seizures induced by homocysteine in rats during ontogenesis. Epilepsia. 1995;36(8):750–6. PubMed
Turski WA, Cavalheiro EA, Bortolotto ZA, Mello LM, Schwarz M, Turski L. Seizures produced by pilocarpine in mice: a behavioral, electroencephalographic and morphological analysis. Brain Res. 1984;321(2):237–53. PubMed
Ahlers FS, Benros ME, Dreier JW, Christensen J. Infections and risk of epilepsy in children and young adults: a nationwide study. Epilepsia. 2019;60(2):275–83. PubMed
Vezzani A, Fujinami RS, White HS, Preux PM, Blumcke I, Sander JW, et al. Infections, inflammation and epilepsy. Acta Neuropathol. 2016;131(2):211–34. PubMed PMC
Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun. 2012;26(4):607–16. PubMed PMC
Pineda E, Shin D, You SJ, Auvin S, Sankar R, Mazarati A. Maternal immune activation promotes hippocampal kindling epileptogenesis in mice. Ann Neurol. 2013;74(1):11–9. PubMed PMC
Beers DR, Henkel JS, Schaefer DC, Rose JW, Stroop WG. Neuropathology of herpes simplex virus encephalitis in a rat seizure model. J Neuropathol Exp Neurol. 1993;52(3):241–52. PubMed
Solbrig MV, Adrian R, Chang DY, Perng G‐C. Viral risk factor for seizures: pathobiology of dynorphin in herpes simplex viral (HSV‐1) seizures in an animal model. Neurobiol Dis. 2006;23(3):612–20. PubMed
Wu HM, Huang CC, Chen SH, Liang YC, Tsai JJ, Hsieh CL, et al. Herpes simplex virus type 1 inoculation enhances hippocampal excitability and seizure susceptibility in mice. Eur J Neurosci. 2003;18(12):3294–304. PubMed
Wu HM, Liang YC, Chen SH, Huang CC, Chen SH, Tsai JJ, et al. Valacyclovir treatment ameliorates the persistently increased pentylenetetrazol‐induced seizure susceptibility in mice with herpes simplex virus type 1 infection. Exp Neurol. 2004;189(1):66–77. PubMed
Chen SF, Huang CC, Wu HM, Chen SH, Liang YC, Hsu KS. Seizure, neuron loss, and mossy fiber sprouting in herpes simplex virus type 1‐infected organotypic hippocampal cultures. Epilepsia. 2004;45(4):322–32. PubMed
Stroop WG, Schaefer DC. Neurovirulence of two clonally related herpes simplex virus type 1 strains in a rabbit seizure model. J Neuropathol Exp Neurol. 1989;48(2):171–83. PubMed
Stringer JL. Chapter 41—Models available for infection‐induced seizures. In: Pitkänen A, Schwartzkroin PA, Moshé SL, editors. Models of seizures and epilepsy. Burlington: Academic Press; 2006. p. 521–6.
Verastegui MR, Mejia A, Clark T, Gavidia CM, Mamani J, Ccopa F, et al. Novel rat model for neurocysticercosis using taenia solium. Am J Pathol. 2015;185(8):2259–68. PubMed PMC
Ronen GM, Streiner DL, Rosenbaum P. Health‐related quality of life in childhood epilepsy: moving beyond ‘seizure control with minimal adverse effects’. Health Qual Life Outcomes. 2003;1:36. PubMed PMC
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. PubMed PMC
Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature. 2012;490(7419):187–91. PubMed PMC
Galanopoulou AS, Buckmaster PS, Staley KJ, Moshé SL, Perucca E, Engel J Jr, et al. Identification of new epilepsy treatments: issues in preclinical methodology. Epilepsia. 2012;53(3):571–82. PubMed PMC
Galanopoulou AS, Kokaia M, Loeb JA, Nehlig A, Pitkänen A, Rogawski MA, et al. Epilepsy therapy development: technical and methodologic issues in studies with animal models. Epilepsia. 2013;54(Suppl 4):13–23. PubMed PMC
Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMJ Open Sci. 2020;4(1):e100115. PubMed PMC
Lidster K, Jefferys JG, Blümcke I, Crunelli V, Flecknell P, Frenguelli BG, et al. Opportunities for improving animal welfare in rodent models of epilepsy and seizures. J Neurosci Methods. 2016;260:2–25. PubMed
Carbone L. Open transparent communication about animals in laboratories: dialog for multiple voices and multiple audiences. Animals. 2021;11(2):368. PubMed PMC
Kirschstein T, Köhling R. Animal models of tumour‐associated epilepsy. J Neurosci Methods. 2016;260:109–17. PubMed
The outcome of early life status epilepticus-lessons from laboratory animals