Periodicity and Spectral Composition of Light in the Regulation of Hypocotyl Elongation of Sunflower Seedlings
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
451-03-68/2022-14/200007
Serbian Ministry of Education, Science and Technological Development
PubMed
35956460
PubMed Central
PMC9370364
DOI
10.3390/plants11151982
PII: plants11151982
Knihovny.cz E-zdroje
- Klíčová slova
- diurnal photoperiods, free-running photoperiods, light entrainment, monochromatic LED light, rhythmicity of hypocotyl elongation,
- Publikační typ
- časopisecké články MeSH
This study presents the hypocotyl elongation of sunflower seedlings germinated under different light conditions. Elongation was rhythmic under diurnal (LD) photoperiods but uniform (arrhythmic) under free-running conditions of white light (LL) or darkness (DD). On the sixth day after the onset of germination, seedlings were entrained in all diurnal photoperiods. Their hypocotyl elongation was dual, showing different kinetics in daytime and nighttime periods. The daytime elongation peak was around midday and 1-2 h after dusk in the nighttime. Plantlets compensated for the differences in the daytime and nighttime durations and exhibited similar overall elongation rates, centered around the uniform elongation in LL conditions. Thus, plants from diurnal photoperiods and LL could be grouped together as white-light treatments that suppressed hypocotyl elongation. Hypocotyl elongation was significantly higher under DD than under white-light photoperiods. In continuous monochromatic blue, yellow, green, or red light, hypocotyl elongation was also uniform and very high. The treatments with monochromatic light and DD had similar overall elongation rates; thus, they could be grouped together. Compared with white light, monochromatic light promoted hypocotyl elongation. Suppression of hypocotyl elongation and rhythmicity reappeared in some combination with two or more monochromatic light colors. The presence of red light was obligatory for this suppression. Plantlets entrained in diurnal photoperiods readily slipped from rhythmic into uniform elongation if they encountered any kind of free-running conditions. These transitions occurred whenever the anticipated duration of daytime or nighttime was extended more than expected, or when plantlets were exposed to constant monochromatic light. This study revealed significant differences in the development of sunflower plantlets illuminated with monochromatic or white light.
Zobrazit více v PubMed
Vandenbussche F., Verbelen J.P., Van Der Straeten D. Of light and length: Regulation of hypocotyl growth in Arabidopsis. Bioessays. 2005;27:275–284. doi: 10.1002/bies.20199. PubMed DOI
McNellis T.W., Deng X.W. Light control of seedling morphogenetic pattern. Plant Cell. 1995;7:1749–1761. PubMed PMC
Von Arnim A., Deng X.W. Light control of seedling development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996;47:215–243. doi: 10.1146/annurev.arplant.47.1.215. PubMed DOI
Fankhauser C., Chory J. Light control of plant development. Annu. Rev. Cell Dev. Biol. 1997;13:203–229. doi: 10.1146/annurev.cellbio.13.1.203. PubMed DOI
Galvão V.C., Fankhauser C. Sensing the light environment in plants: Photoreceptors and early signaling steps. Curr. Opin. Neurobiol. 2015;34:46–53. doi: 10.1016/j.conb.2015.01.013. PubMed DOI
Wilkins M.B. Circadian rhythms: Their origin and control. New Phytol. 1992;121:347–375. doi: 10.1111/j.1469-8137.1992.tb02936.x. PubMed DOI
Schaffer R., Landgraf J., Accerbi M., Simon V., Larson M., Wisman E. Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell. 2001;13:113–123. doi: 10.1105/tpc.13.1.113. PubMed DOI PMC
Michael T.P., McClung C.R. Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiol. 2003;132:629–663. doi: 10.1104/pp.021006. PubMed DOI PMC
Covington M.F., Maloof J.N., Straume M., Kay S.A., Harmer S.L. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 2008;9:R130. doi: 10.1186/gb-2008-9-8-r130. PubMed DOI PMC
Harmer S.L., Hogenesch J.B., Straume M., Chang H.S., Han B., Zhu T., Wang X., Kreps J.A., Kay S.A. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science. 2000;290:2110–2113. doi: 10.1126/science.290.5499.2110. PubMed DOI
McClung C.R. The plant circadian oscillator. Biology. 2019;8:14. doi: 10.3390/biology8010014. PubMed DOI PMC
Mas P. Circadian clock signaling in Arabidopsis thaliana: From gene expression to physiology and development. Int. J. Dev. Biol. 2005;49:491–500. doi: 10.1387/ijdb.041968pm. PubMed DOI
Millar A.J. Input signals to the plant circadian clock. J. Exp. Bot. 2004;55:277–283. doi: 10.1093/jxb/erh034. PubMed DOI
Somers D.E., Devlin P.F., Kay S.A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science. 1998;282:1488–1490. doi: 10.1126/science.282.5393.1488. PubMed DOI
Kozma Bognar L., Hall A., Adam E., Thain S.C., Nagy F., Millar A.J. The circadian clock controls the expression pattern of the circadian input photoreceptor, phytochrome B. Proc. Natl. Acad. Sci. USA. 1999;96:14652–14657. doi: 10.1073/pnas.96.25.14652. PubMed DOI PMC
Erikkson M.E., Millar A.J. The circadian clock. A plant’s best friend in a spinning world. Plant Physiol. 2003;132:732–738. doi: 10.1104/pp.103.022343. PubMed DOI PMC
Dowson-Day M.J., Millar A.J. Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J. 1999;17:63–71. doi: 10.1046/j.1365-313X.1999.00353.x. PubMed DOI
Michael M., Neff M.M., Fankhauser C., Chory J. Light: An indicator of time and place. Genes Dev. 2000;14:257–271. PubMed
Más P., Devlin P.F., Panda S., Kay S.A. Functional interaction of phytochrome B and cryptochrome 2. Nature. 2000;408:207–211. doi: 10.1038/35041583. PubMed DOI
Lin C. Plant blue light receptors. Trends Plant Sci. 2000;5:337–341. doi: 10.1016/S1360-1385(00)01687-3. PubMed DOI
Parks B.M., Folta K.M., Spalding E.P. Photocontrol of stem growth. Plant Cell. 2002;12:1063–1078. doi: 10.1016/S1369-5266(00)00197-7. PubMed DOI
Folta K.M., Spalding E.P. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J. 2001;26:471–478. doi: 10.1046/j.1365-313x.2001.01038.x. PubMed DOI
Jaedicke K., Lichtenthäler A.L., Meyberg R., Zeidler M., Hughes J. A phytochrome-phototropin light signaling complex at the plasma membrane. Proc. Natl. Acad. Sci. USA. 2012;109:12231–12236. doi: 10.1073/pnas.1120203109. PubMed DOI PMC
Casal J.J. Phytohromes, cryptochromes. phototropin: Photoreceptor interactions in plants. Photochem. Photobiol. 2000;71:1–11. doi: 10.1562/0031-8655(2000)071<0001:PCPPII>2.0.CO;2. PubMed DOI
De Grauwe L., Vandenbussche F., Van Der Straeten D. Signal crosstalk in the control of hypocotyl elongation in Arabidopsis. In: Verbelen J.P., Vissenberg K., editors. Plant Cell Monogr, The Expanding Cell. Volume 5. Springer; Berlin/Heidelberg, Germany: 2006. pp. 271–293.
Ma L., Li J., Qu L., Hager J., Chen Z., Zhao H., Deng X.W. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell. 2001;13:2589–2607. doi: 10.1105/tpc.010229. PubMed DOI PMC
Parks B.M., Hoecker U., Spalding E.P. Light-induced growth promotion by SPA1 counteracts phytochrome-mediated growth inhibition during- de-etiolation. Plant Physiol. 2001;126:1291–1298. doi: 10.1104/pp.126.3.1291. PubMed DOI PMC
Qin N., Xu D., Li J., Deng X.W. COP9 signalosome: Discovery, conservation, activity, and function. J. Integr. Plant Biol. 2020;62:90–103. doi: 10.1111/jipb.12903. PubMed DOI
Deng X.W., Caspar T., Quail P.H. cop1: A regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev. 1991;5:1172–1182. doi: 10.1101/gad.5.7.1172. PubMed DOI
Alabadí D., Gil J., Blázquez M.A., García-Martínez J.L. Gibberellins repress photomorphogenesis in darkness. Plant Physiol. 2004;134:1050–1057. doi: 10.1104/pp.103.035451. PubMed DOI PMC
De Ropp R.S. The growth capacity of the sunflower hypocotyl. Plant Physiol. 1951;26:778–783. doi: 10.1104/pp.26.4.778. PubMed DOI PMC
Diemer R. Untersuchungen des Phototropischen Induktionsvorganges an Helianthus-Keimlingen. Planta. 1961;57:111–137. doi: 10.1007/BF01911301. DOI
Garrison R., Briggs W.R. The growth of internodes in Helianthus in response to far-red light. Bot. Gazzete. 1975;136:353–357. doi: 10.1086/336826. DOI
Franssen J.M. Phototropism in Seedlings of Sunflower, Helianthus annuus L. Volume 80. Wageningen University and Research; Wageningen, The Netherlands: 1980. pp. 1–84.
Kutschera U., Kohler K. Turgor pressure and elongation growth in developing sunflower hypocotyls. J. Plant Physiol. 1993;141:757–758. doi: 10.1016/S0176-1617(11)81587-7. DOI
Heupel T., Kutschera U. Cell number and organ size in developing sunflower hypocotyls. J. Plant Physiol. 1997;151:379–381. doi: 10.1016/S0176-1617(97)80269-6. DOI
Peters W.S., Farm M.S., Kopf A.J. Does growth correlate with turgor-induced elastic strain in stems? A re-evaluation of de Vries’ classical experiments. Plant Physiol. 2001;125:2173–2179. doi: 10.1104/pp.125.4.2173. PubMed DOI PMC
Spalding E.P., Miller N.D. Image analysis is driving a renaissance in growth measurement. Curr. Opin. Plant Biol. 2013;16:100–104. doi: 10.1016/j.pbi.2013.01.001. PubMed DOI
Stolarz M., Krol E., Dziubinska H., Zawadzki T. Complex relationship between growth and circumnutations in Helianthus annuus stem. Plant Signal Behav. 2008;3:376–380. doi: 10.4161/psb.3.6.5714. PubMed DOI PMC
Jose A.M., Vince-Prue D. Action spectra for the inhibition of growth in radish hypocotyls. Planta. 1978;136:131–134. doi: 10.1007/BF00396188. PubMed DOI
Beggs C.J., Holmes M.G., Jabben M., Schäfer E. Action spectra for the inhibition of hypocotyl growth by continuous irradiation in light and dark-grown Sinapis alba L. seedlings. Plant Physiol. 1980;66:615–618. doi: 10.1104/pp.66.4.615. PubMed DOI PMC
Meijer G. Rapid growth inhibition of gherkin hypocotyls in blue light. Acta Bot. Neerl. 1968;17:9–14. doi: 10.1111/j.1438-8677.1968.tb00060.x. DOI
Thomas B., Dickinson H.G. Evidence for two photoreceptors cotrolling growth in de-etiolated seedlings. Planta. 1979;146:545–550. doi: 10.1007/BF00388830. PubMed DOI
Seabrook J.E.A. Light effects on the growth and morphogenesis of potato (Solanum tuberosum) in vitro: A review. Am. J. Potato Res. 2005;82:353–367. doi: 10.1007/BF02871966. DOI
Franssen J.M., Bruinsma J. Relationships beween xanthoxin, phototropism and elongation growth in the sunflower seedling Helianthus annuus L. Planta. 1981;151:365–370. doi: 10.1007/BF00393292. PubMed DOI
Cosgrove D.J., Green P.B. Rapid suppression of growth by blue light. Plant Physiol. 1981;68:1447–1453. doi: 10.1104/pp.68.6.1447. PubMed DOI PMC
Folta K.M. Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiol. 2004;135:1407–1416. doi: 10.1104/pp.104.038893. PubMed DOI PMC
Niwa Y., Yamashino T., Mizuno T. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Plant Cell Physiol. 2009;50:838–854. doi: 10.1093/pcp/pcp028. PubMed DOI
Lascève G., Leymarie J., Olney M.A., Liscum E., Christie J.M., Vavasseur A., Briggs W.R. Arabidopsis contains at least four independent blue-light-activated signal transduction pathways. Plant Physiol. 1999;120:605–614. doi: 10.1104/pp.120.2.605. PubMed DOI PMC
Smith H. Phytochromes and light signal perception by plants—An emerging synthesis. Nature. 2000;40:585–591. doi: 10.1038/35036500. PubMed DOI
Kurepin L.V., Walton L.J., Reid D.M. Interaction of red to far red light ratio and ethylene in regulating stem elongation of Helianthus annuus. Plant Growth Regul. 2007;51:53–61. doi: 10.1007/s10725-006-9147-x. DOI
Franklin K.A. Shade avoidance. New Phytol. 2008;179:930–944. doi: 10.1111/j.1469-8137.2008.02507.x. PubMed DOI
Boyes D.C., Zayed A.M., Ascenzi R., McCaskill A.J., Hoffman N.E., Davis K.R., Görlach J. Growth stage–based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. Plant Cell. 2001;13:1499–1510. doi: 10.1105/TPC.010011. PubMed DOI PMC
Vinterhalter D., Vinterhalter B. Diurnal photoperiods and rhythmicity of the phototropic bending response in hypocotyls of sunflower, Helianthus annuus L. seedlings. Arch. Biol. Sci. 2021;73:237–246. doi: 10.2298/ABS210205018V. DOI
Vinterhalter D., Vinterhalter B., Savić J., Milojević J., Belić M., Dobrev P., Motyka V. Light-Affected Changes in Phytohormone Levels of Germinating Sunflower (Helianthus annuus L.) Seedlings. 2022. in preparation .