Modeling the Phase Equilibria of Associating Polymers in Porous Media with Respect to Chromatographic Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-01233S
Czech Science Foundation
U20A20340
National Natural Science Foundation of China
PubMed
35956697
PubMed Central
PMC9370872
DOI
10.3390/polym14153182
PII: polym14153182
Knihovny.cz E-zdroje
- Klíčová slova
- Monte Carlo simulation, amphiphilic diblock copolymer, association, critical micelle concentration, micellar liquid chromatography, partition coefficient, size-exclusion chromatography,
- Publikační typ
- časopisecké články MeSH
Associating copolymers self-assemble during their passage through a liquid chromatography (LC) column, and the elution differs from that of common non-associating polymers. This computational study aims at elucidating the mechanism of their unique and intricate chromatographic behavior. We focused on amphiphilic diblock copolymers in selective solvents, performed the Monte Carlo (MC) simulations of their partitioning between a bulk solvent (mobile phase) and a cylindrical pore (stationary phase), and investigated the concentration dependences of the partition coefficient and of other functions describing the phase behavior. The observed abruptly changing concentration dependences of the effective partition coefficient demonstrate the significant impact of the association of copolymers with their partitioning between the two phases. The performed simulations reveal the intricate interplay of the entropy-driven and the enthalpy-driven processes, elucidate at the molecular level how the self-assembly affects the chromatographic behavior, and provide useful hints for the analysis of experimental elution curves of associating polymers.
Zobrazit více v PubMed
Netopilík M., Janata M., Trhlíková O., Berek D. Fast and efficient single step liquid chromatography separation of parent homopolymers from block copolymers. J. Chromatogr. A. 2021;1653:462441. doi: 10.1016/j.chroma.2021.462441. PubMed DOI
Niezen L.E., Staal B.B., Lang C., Pirok B.W., Schoenmakers P.J. Thermal modulation to enhance two-dimensional liquid chromatography separations of polymers. J. Chromatogr. A. 2021;1653:462429. doi: 10.1016/j.chroma.2021.462429. PubMed DOI
Chang T. Chapter 3—Temperature gradient interaction chromatography of polymers. In: Malik M.I., Mays J., Shah M.R., editors. Molecular Characterization of Polymers. Elsevier; Amsterdam, The Netherlands: 2021. pp. 97–128.
Radke W. Polymer separations by liquid interaction chromatography: Principles–prospects–limitations. J. Chromatogr. A. 2014;1335:62–79. doi: 10.1016/j.chroma.2013.12.010. PubMed DOI
Berek D. Size exclusion chromatography—A blessing and a curse of science and technology of synthetic polymers. J. Sep. Sci. 2010;33:315–335. doi: 10.1002/jssc.200900709. PubMed DOI
Chang T. Macromolecular Engineering. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2022. Separation of Polymers by Chromatography; pp. 1–40.
Netopilík M., Janata M., Svitáková R., Trhlíková O., Berek D., Macova E., Limpouchová Z., Procházka K. Chromatographic study of the conformational behavior of graft copolymers with a broad distribution of grafting densities in dilute solutions in selective solvents for grafts. J. Liq. Chromatogr. Relat. Technol. 2016;39:50–58. doi: 10.1080/10826076.2015.1126727. DOI
García-Alvarez-Coque M.C., Ruiz-Angel M.J., Peris-García E. Liquid chromatography|Micellar Liquid Chromatography. In: Worsfold P., Poole C., Townshend A., Miró M., editors. Encyclopedia of Analytical Science. 3rd ed. Academic Press; Oxford, UK: 2019. pp. 133–142.
Ibrahim A.E., Elmaaty A.A., El-Sayed H.M. Determination of six drugs used for treatment of common cold by micellar liquid chromatography. Anal. Bioanal. Chem. 2021;413:5051–5065. doi: 10.1007/s00216-021-03469-3. PubMed DOI
Alwera V., Sehlangia S., Alwera S. Enantioseparation of racemic amino alcohols using green micellar liquid chromatography and confirmation of absolute configuration with elution order. Sep. Sci. Technol. 2021;56:2278–2286. doi: 10.1080/01496395.2020.1819826. DOI
Waters L.J., Shokry D.S., Parkes G.M. Predicting human intestinal absorption in the presence of bile salt with micellar liquid chromatography. Biomed. Chromatogr. 2016;30:1618–1624. doi: 10.1002/bmc.3731. PubMed DOI
Pawar R.P., Mishra P., Durgbanshi A., Bose D., Albiol-Chiva J., Peris-Vicente J., García-Ferrer D., Esteve-Romero J. Use of Micellar Liquid Chromatography to Determine Mebendazole in Dairy Products and Breeding Waste from Bovine Animals. Antibiotics. 2020;9:86 PubMed PMC
Stȩpnik K.E. A concise review of applications of micellar liquid chromatography to study biologically active compounds. Biomed. Chromatogr. 2017;31:e3741. doi: 10.1002/bmc.3741. PubMed DOI
Stȩpnik K.E., Malinowska I., Maciejewska M. A new application of micellar liquid chromatography in the determination of free ampicillin concentration in the drug–human serum albumin standard solution in comparison with the adsorption method. Talanta. 2016;153:1–7. doi: 10.1016/j.talanta.2016.02.045. PubMed DOI
Ke J., Dong Y., Luo T., Xie Y. Development of a gradient micellar liquid chromatographic method eluting from micellar mode to high submicellar mode for the rapid separation of free amino acids. Anal. Methods. 2017;9:1762–1770. doi: 10.1039/C6AY03453E. DOI
Elias H.G., Šolc K. Multimerization: Association and aggregation, 14. Distinction between open and closed associations. Die Makromol. Chem. 1975;176:365–371. doi: 10.1002/macp.1975.021760210. DOI
Procházka K., Mandák T., Bednář B., Trněná J., Tuzar Z. Behavior of Reversibly Associating Systems in Size Exclusion Chromatography. Interpretation of Experimental Data Based on Theoretical Model. J. Liq. Chromatogr. 1990;13:1765–1783. doi: 10.1080/01483919008048991. DOI
Procházka K., Mandák T., Kočiřík M., Bednář B., Tuzar Z. Chromatographic behaviour of reversibly associating macromolecules. Part 1.—Theoretical model. J. Chem. Soc. Faraday Trans. 1990;86:1103–1108. doi: 10.1039/FT9908601103. DOI
Grubišic-Gallot Z., Sedláček J., Gallot Y. Study Of Polystyrene-block-poly(methyl methacrylate) Micelles by Size Exclusion Chromatography/Low Angle Laser Light Scattering Anomalous Micellization. J. Liq. Chromatogr. Relat. Technol. 1998;21:2459–2472. doi: 10.1080/10826079808003591. DOI
Desjardins A., Eisenberg A. Colloidal properties of block ionomers. 1. Characterization of reverse micelles of styrene-b-metal methacrylate diblocks by size-exclusion chromatography. Macromolecules. 1991;24:5779–5790. doi: 10.1021/ma00021a009. DOI
Hvidt S., Batsberg W. Characterization and Micellization of a Poloxamer Block Copolymer. Int. J. Polym. Anal. Charact. 2007;12:13–22. doi: 10.1080/10236660601094093. DOI
Nixon S.K., Hvidt S., Booth C. Micellization of block copolymer P94 in aqueous solution. J. Colloid Interface Sci. 2004;280:219–223. doi: 10.1016/j.jcis.2004.07.031. PubMed DOI
Adawy A., Groves M.R. The Use of Size Exclusion Chromatography to Monitor Protein Self-Assembly. Crystals. 2017;7:331. doi: 10.3390/cryst7110331. DOI
Wang X., Lísal M., Procházka K., Limpouchová Z. Computer Study of Chromatographic Separation Process: A Monte Carlo Study of H-Shaped and Linear Homopolymers in Good Solvent. Macromolecules. 2016;49:1093–1102. doi: 10.1021/acs.macromol.5b02327. DOI
Ahn J., Chang T., Wang X., Limpouchová Z., Procházka K. Influence of the Chain Architecture and the Presence of End-Groups or Branching Units Chemically Different from Repeating Structural Units on the Critical Adsorption Point in Liquid Chromatography. Macromolecules. 2017;50:8720–8730. doi: 10.1021/acs.macromol.7b01786. DOI
Wang X., Procházka K., Limpouchová Z. Partitioning of polymers between bulk and porous media: Monte Carlo study of the effect of pore size distribution. J. Colloid Interface Sci. 2020;567:103–112. doi: 10.1016/j.jcis.2020.01.119. PubMed DOI
Ziebarth J.D., Wang Y. Interactions of complex polymers with nanoporous substrate. Soft Matter. 2016;12:5245–5256. doi: 10.1039/C6SM00768F. PubMed DOI
Ziebarth J.D., Gardiner A.A., Wang Y., Jeong Y., Ahn J., Jin Y., Chang T. Comparison of Critical Adsorption Points of Ring Polymers with Linear Polymers. Macromolecules. 2016;49:8780–8788. doi: 10.1021/acs.macromol.6b01925. DOI
Zhu Y., Ziebarth J., Fu C., Wang Y. A Monte Carlo study on LCCC characterization of graft copolymers at the critical condition of side chains. Polymer. 2015;67:47–54. doi: 10.1016/j.polymer.2015.04.067. DOI
Yang X., Zhu Y., Wang Y. Can the individual block in block copolymer be made chromatographically “invisible” at the critical condition of its corresponding homopolymer? Polymer. 2013;54:3730–3736. doi: 10.1016/j.polymer.2013.05.018. DOI
Bleha T., Cifra P. Polymer-Induced Depletion Interaction between Weakly Attractive Plates. Langmuir. 2004;20:764–770. doi: 10.1021/la035401h. PubMed DOI
Škrinárová Z., Bleha T., Cifra P. Concentration Effects in Partitioning of Macromolecules into Pores with Attractive Walls. Macromolecules. 2002;35:8896–8905. doi: 10.1021/ma020808z. DOI
Cifra P., Teraoka I. Confined Polymer Chains in a Θ Solvent: A Model with Polymer–Solvent Interactions. Macromolecules. 2003;36:9638–9646. doi: 10.1021/ma034656z. DOI
Škrinárová Z., Cifra P. Partitioning of Semiflexible Macromolecules into a Slit in Theta Solvent. Macromol. Theory Simul. 2002;11:401–409. doi: 10.1002/1521-3919(20020401)11:4<401::AID-MATS401>3.0.CO;2-I. DOI
Cifra P., Bleha T. Partition Coefficients and the Free Energy of Confinement from Simulations of Nonideal Polymer Systems. Macromolecules. 2001;34:605–613. doi: 10.1021/ma000964a. DOI
Škrinárová Z., Cifra P. Partitioning of Semiflexible Macromolecules into a Slit in Good Solvents. Macromol. Theory Simul. 2001;10:523–531. doi: 10.1002/1521-3919(20010601)10:5<523::AID-MATS523>3.0.CO;2-W. DOI
Wang Y., Teraoka I. Computer Simulation of Semidilute Polymer Solutions in Confined Geometry: Pore as a Microscopic Probe. Macromolecules. 1997;30:8473–8477. doi: 10.1021/ma970741t. DOI
Wang X., Limpouchová Z., Procházka K. Separation of polymers differing in their chain architecture by interaction chromatography: Phase equilibria and conformational behavior of polymers in strongly adsorbing porous media. Polymer. 2019;175:99–106. doi: 10.1016/j.polymer.2019.05.006. DOI
Yan N., Zhu Y., Jiang W. Recent progress in the self-assembly of block copolymers confined in emulsion droplets. Chem. Commun. 2018;54:13183–13195. doi: 10.1039/C8CC05812A. PubMed DOI
Yan N., Liu X., Zhang Y., Sun N., Jiang W., Zhu Y. Confined co-assembly of AB/BC diblock copolymer blends under 3D soft confinement. Soft Matter. 2018;14:4679–4686. doi: 10.1039/C8SM00486B. PubMed DOI
Xu Z., Lin J., Zhang Q., Wang L., Tian X. Theoretical simulations of nanostructures self-assembled from copolymer systems. Polym. Chem. 2016;7:3783–3811. doi: 10.1039/C6PY00535G. DOI
Cui T., Li X., Dong B., Li X., Guo M., Wu L., Li B., Li H. Janus onions of block copolymers via confined self-assembly. Polymer. 2019;174:70–76. doi: 10.1016/j.polymer.2019.04.062. DOI
Horechyy A., Paturej J., Nandan B., Jehnichen D., Göbel M., Reuter U., Sommer J.U., Stamm M. Nanoparticle assembly under block copolymer confinement: The effect of nanoparticle size and confinement strength. J. Colloid Interface Sci. 2020;578:441–451. doi: 10.1016/j.jcis.2020.05.115. PubMed DOI
Bordin J.R., Krott L.B. How Competitive Interactions Affect the Self-Assembly of Confined Janus Dumbbells. J. Phys. Chem. B. 2017;121:4308–4317. doi: 10.1021/acs.jpcb.7b01696. PubMed DOI
Park J.H., Joo Y.L. Formation of interconnected morphologies via nanorod inclusion in the confined assembly of symmetric block copolymers. Phys. Chem. Chem. Phys. 2014;16:8865–8871. doi: 10.1039/C4CP00352G. PubMed DOI
Huang J.H., Wu J.J., Huang X.W. Self-assembly of symmetric rod-coil diblock copolymers in cylindrical nanopore. RSC Adv. 2016;6:100559–100567. doi: 10.1039/C6RA22122J. DOI
Liu M., Chen K., Li W., Wang X. Tunable helical structures formed by ABC triblock copolymers under cylindrical confinement. Phys. Chem. Chem. Phys. 2019;21:26333–26341. doi: 10.1039/C9CP04978A. PubMed DOI
Yu B., Sun P., Chen T., Jin Q., Ding D., Li B., Shi A.C. Confinement-Induced Novel Morphologies of Block Copolymers. Phys. Rev. Lett. 2006;96:138306. doi: 10.1103/PhysRevLett.96.138306. PubMed DOI
Hao J., Wang Z., Wang Z., Yin Y., Jiang R., Li B., Wang Q. Self-Assembly in Block Copolymer Thin Films upon Solvent Evaporation: A Simulation Study. Macromolecules. 2017;50:4384–4396. doi: 10.1021/acs.macromol.7b00200. DOI
Kong W., Li B., Jin Q., Ding D., Shi A.C. Helical Vesicles, Segmented Semivesicles, and Noncircular Bilayer Sheets from Solution-State Self-Assembly of ABC Miktoarm Star Terpolymers. J. Am. Chem. Soc. 2009;131:8503–8512. doi: 10.1021/ja900405r. PubMed DOI
Larson R. Monte Carlo simulations of the phase behavior of surfactant solutions. J. De Phys. II. 1996;6:1441–1463. doi: 10.1051/jp2:1996141. DOI
Kivenson A., Hagan M.F. Mechanisms of Capsid Assembly around a Polymer. Biophys. J. 2010;99:619–628. doi: 10.1016/j.bpj.2010.04.035. PubMed DOI PMC
Jo W.H., Jang S.S. Monte Carlo simulation of the order–disorder transition of a symmetric cyclic diblock copolymer system. J. Chem. Phys. 1999;111:1712–1720. doi: 10.1063/1.479431. DOI
Siepmann J.I., Frenkel D. Configurational bias Monte Carlo: A new sampling scheme for flexible chains. Mol. Phys. 1992;75:59–70. doi: 10.1080/00268979200100061. DOI
Rolińska K., Sikorski A. Adsorption of Linear and Cyclic Multiblock Copolymers from Selective Solvent. A Monte Carlo Study. Macromol. Theory Simul. 2020;29:2000053. doi: 10.1002/mats.202000053. DOI
Hugouvieux V., Axelos M.A.V., Kolb M. Micelle formation, gelation and phase separation of amphiphilic multiblock copolymers. Soft Matter. 2011;7:2580–2591. doi: 10.1039/c0sm01018a. DOI
Kim S.H., Jo W.H. A Monte Carlo simulation for the micellization of ABA- and BAB-type triblock copolymers in a selective solvent. II. Effects of the block composition. J. Chem. Phys. 2002;117:8565–8572. doi: 10.1063/1.1512646. DOI
Kim S.H., Jo W.H. A Monte Carlo Simulation for the Micellization of ABA- and BAB-Type Triblock Copolymers in a Selective Solvent. Macromolecules. 2001;34:7210–7218. doi: 10.1021/ma0105136. DOI
Havránková J., Limpouchová Z., Procházka K. A New Simulation Algorithm with Revised “Association Criteria” for Studying the Association of Heteroarm Star Copolymers. Macromol. Theory Simul. 2005;14:560–568. doi: 10.1002/mats.200500040. DOI
Kuldová J., Košovan P., Limpouchová Z., Procházka K. Computer Study of the Association Behavior of Gradient Copolymers: Analysis of Simulation Results Based on a New Algorithm for Recognition and Classification of Aggregates. Macromol. Theory Simul. 2013;22:61–70. doi: 10.1002/mats.201200055. DOI
Willis J.D., Beardsley T.M., Matsen M.W. Simple and Accurate Calibration of the Flory–Huggins Interaction Parameter. Macromolecules. 2020;53:9973–9982. doi: 10.1021/acs.macromol.0c02115. DOI
Li X., Chiew Y.C. Monte Carlo simulation of Lennard-Jones chains. J. Chem. Phys. 1994;101:2522–2531. doi: 10.1063/1.467691. DOI
Panagiotopoulos A.Z. Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol. Phys. 1987;61:813–826. doi: 10.1080/00268978700101491. DOI
Wijmans C.M., Linse P. Modeling of Nonionic Micelles. Langmuir. 1995;11:3748–3756. doi: 10.1021/la00010a027. DOI
Uhlík F., Limpouchová Z., Jelínek K., Procházka K. A Monte Carlo study of shells of hydrophobically modified amphiphilic copolymer micelles in polar solvents. J. Chem. Phys. 2003;118:11258–11264. doi: 10.1063/1.1575732. DOI
Šindelka K., Limpouchová Z., Lísal M., Procházka K. The electrostatic co-assembly in non-stoichiometric aqueous mixtures of copolymers composed of one neutral water-soluble and one polyelectrolyte (either positively or negatively charged) block: A dissipative particle dynamics study. Phys. Chem. Chem. Phys. 2016;18:16137–16151. doi: 10.1039/C6CP01047D. PubMed DOI
Procházka K., Šindelka K., Wang X., Limpouchová Z., Lísal M. Self-assembly and co-assembly of block polyelectrolytes in aqueous solutions. Dissipative particle dynamics with explicit electrostatics. Mol. Phys. 2016;114:3077–3092. doi: 10.1080/00268976.2016.1225130. DOI
Casassa E.F. Equilibrium distribution of flexible polymer chains between a macroscopic solution phase and small voids. J. Polym. Sci. Part B Polym. Lett. 1967;5:773–778. doi: 10.1002/pol.1967.110050907. DOI
Bhattacharjee J.K., Kaatze U. Fluctuations Near the Critical Micelle Concentration. I. Premicellar Aggregation, Relaxation Rate, and Isentropic Compressibility. J. Phys. Chem. B. 2013;117:3790–3797. doi: 10.1021/jp4011185. PubMed DOI
Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Riess G. Micellization of block copolymers. Prog. Polym. Sci. 2003;28:1107–1170. doi: 10.1016/S0079-6700(03)00015-7. DOI
Zhang X., Wang C. Supramolecular amphiphiles. Chem. Soc. Rev. 2011;40:94–101. doi: 10.1039/B919678C. PubMed DOI
Lodge T.P., Bang J., Hanley K.J., Krocak J., Dahlquist S., Sujan B., Ott J. Origins of Anomalous Micellization in Diblock Copolymer Solutions. Langmuir. 2003;19:2103–2109. doi: 10.1021/la0268808. DOI
Mansour O.T., Cattoz B., Beaube M., Montagnon M., Heenan R.K., Schweins R., Appavou M.S., Griffiths P.C. Assembly of small molecule surfactants at highly dynamic air–water interfaces. Soft Matter. 2017;13:8807–8815. doi: 10.1039/C7SM01914A. PubMed DOI
Peng M., Nguyen A.V. Adsorption of ionic surfactants at the air-water interface: The gap between theory and experiment. Adv. Colloid Interface Sci. 2020;275:102052. doi: 10.1016/j.cis.2019.102052. PubMed DOI
Szutkowski K., Kołodziejska Z., Pietralik Z., Zhukov I., Skrzypczak A., Materna K., Kozak M. Clear distinction between CAC and CMC revealed by high-resolution NMR diffusometry for a series of bis-imidazolium gemini surfactants in aqueous solutions. RSC Adv. 2018;8:38470–38482. doi: 10.1039/C8RA07081D. PubMed DOI PMC
Diamant H., Andelman D. Free energy approach to micellization and aggregation: Equilibrium, metastability, and kinetics. Curr. Opin. Colloid Interface Sci. 2016;22:94–98. doi: 10.1016/j.cocis.2016.03.004. DOI
Zhang X., Arce Nunez J.G., Kindt J.T. Derivation of micelle size-dependent free energies of aggregation for octyl phosphocholine from molecular dynamics simulation. Fluid Phase Equilibria. 2019;485:83–93. doi: 10.1016/j.fluid.2018.12.001. DOI
Wang Y., Mattice W.L., Napper D.H. Simulation of the formation of micelles by diblock copolymers under weak segregation. Langmuir. 1993;9:66–70. doi: 10.1021/la00025a017. DOI
Rosenbluth M.N., Rosenbluth A.W. Monte Carlo Calculation of the Average Extension of Molecular Chains. J. Chem. Phys. 1955;23:356–359. doi: 10.1063/1.1741967. DOI
Wang X., Limpouchová Z., Procházka K., Liu Y., Min Y. Phase equilibria and conformational behavior of dendrimers in porous media: Towards chromatographic analysis of dendrimers. J. Colloid Interface Sci. 2022;608:830–839. doi: 10.1016/j.jcis.2021.09.177. PubMed DOI
Somasundaran P., Huang L. Adsorption/aggregation of surfactants and their mixtures at solid–liquid interfaces. Adv. Colloid Interface Sci. 2000;88:179–208. doi: 10.1016/S0001-8686(00)00044-0. PubMed DOI
Chingin K., Yan R., Zhong D., Chen H. Enrichment of Surface-Active Compounds in Bursting Bubble Aerosols. ACS Omega. 2018;3:8709–8717. doi: 10.1021/acsomega.8b01157. PubMed DOI PMC
Viduna D., Limpouchová Z., Procházka K. Monte Carlo simulation of polymer brushes in narrow pores. J. Chem. Phys. 2001;115:7309–7318. doi: 10.1063/1.1405444. DOI