Paenibacillus alkalitolerans sp. nov., a bacterium isolated from a salt lake of Turpan City in Xinjiang Province, north-west China

. 2023 Feb ; 68 (1) : 115-120. [epub] 20220817

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35976485

Grantová podpora
31500011 National Natural Science Foundation of China
31860017 National Natural Science Foundation of China
31760003 National Natural Science Foundation of China
202002AA100007 Major Science and Technology Projects of Yunnan Province (Digitalization, development and application of biotic resource
2018IA100 South and Southeast Asia Cooperation Base on Microbiological Resource Prevention and Utilization

Odkazy

PubMed 35976485
DOI 10.1007/s12223-021-00931-8
PII: 10.1007/s12223-021-00931-8
Knihovny.cz E-zdroje

A Gram stain-positive, rod-shaped, motile, aerobic and terminal endospore formation bacterium, designated YIM B00362T, was isolated from saline soil samples collected from a salt lake in Xinjiang Province, north-west China. Phylogenetic analysis based on the 16S rRNA gene sequences and whole genomes indicated that the isolate belongs to the genus Paenibacillus. However, the highest sequence similarity between strain YIM B00362T and the relatives was only 94.4%. Moreover, the DNA-DNA relatedness and ANI values between the novel isolate and the relative type strain, Paenibacillus antri SYSU K30003T was 13.6% and 70.3%, respectively. The major cellular fatty acids were anteiso-C15:0, C16:0 and the major quinone was MK-7. The isolate contained meso-diaminopimelic acid as the diagnostic diamino acid and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylglyceride, and two unidentified polar lipids. The genomic DNA G + C content was 50.9 mol%. The major whole-cell sugars contained glucose and galactose. On the basis of physiological, phenotypic, and chemotaxonomic data, strain YIM B00362T represents a novel species of genus Paenibacillus, for which the name Paenibacillus alkalitolerans sp. nov. is proposed. The type strain is YIM B00362T (= KCTC 43272 T = CGMCC 1.18801 T = NBRC 114667 T).

Zobrazit více v PubMed

Ash C, Priest FG, Collins MD (1994) Molecular identification of rRNA group 3 bacilli (ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253–260. https://doi.org/10.1007/BF00873085 DOI

Amoozegar MA, Bagheri M, Makhdoumi-Kakhki A, Didari M, Schumann P, Spröer C, Sánchez-Porro C, Ventosa A (2014) Oceanobacillus limi sp. nov., a moderately halophilic bacterium from a salt lake. Int J Syst Evol Microbiol 64:1284–1289. https://doi.org/10.1099/ijs.0.057265-0 PubMed DOI

Baron EJ, Finegold SM (1990) Bailey and Scott’s diagnostic microbiology, 8th edn. Mosby, St Louis

Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68(1):461–466. https://doi.org/10.1099/ijsem.0.002516 PubMed DOI

Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470. https://doi.org/10.1111/j.1365-2672.1980.tb01036.x DOI

Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230. https://doi.org/10.1099/00221287-100-2-221 PubMed DOI

Feng YZ, Chunyu WX, Liang R, Hahnke RL, Tang SK (2020) Vallicoccus soli gen. nov., sp. nov., a novel actinobacterium isolated from soil, and description of Vallicoccaceae fam. nov., Motilibacterales ord. nov.. Antonie van Leeuwenhoek https://doi.org/10.1007/s10482-020-01484-5

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/bf01734359 PubMed DOI

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x PubMed DOI

Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416. https://doi.org/10.2307/2412116 DOI

Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 15(1):203. https://doi.org/10.1186/s12934-016-0603-7 PubMed DOI PMC

Harrigan WF, McCance ME (1976) Laboratory methods in food and dairy microbiology. Academic Press, London

Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29(4):319–322. https://doi.org/10.2323/jgam.29.319 DOI

Heo J, Kim SJ, Kim JS, Hong SB, Kwon SW (2020) Paenibacillus protaetiae sp. nov., isolated from gut of larva of Protaetia brevitarsis seulensis. Int J Syst Evol Microbiol 70(2):989–994. https://doi.org/10.1099/ijsem.0.003860 PubMed DOI

Huq MA (2020) Paenibacillus anseongense sp. nov. a silver nanoparticle producing bacterium isolated from rhizospheric soil. Curr Microbiol 77(9):2023–2030. https://doi.org/10.1007/s00284-020-02086-0 PubMed DOI

Jung HI, Park S, Niu KM, Lee SW, Kothari D, Yi KJ, Kim SK (2021) Complete genome sequence of Paenibacillus konkukensis sp. nov. SK3146 as a potential probiotic strain. J Anim Sci Technol 63(3):666–670. https://doi.org/10.5187/jast.2021.e57 PubMed DOI PMC

Kim J, Jung HS, Baek JH, Chun BH, Khan SA, Jeon CO (2021) Paenibacillus silvestris sp. nov., isolated from forest soil. Curr Microbiol 78(2):822–829. https://doi.org/10.1007/s00284-020-02333-4 PubMed DOI

Kong D, Zhang Q, Jiang X, Ma Q, Han X, Zhou Y, Xue H, Zhang Y, Zhang W, Ruan Z (2020) Paenibacillus solisilvae sp. nov., isolated from birch forest soil. Int J Syst Evol Microbiol 70(4):2690–2695. https://doi.org/10.1099/ijsem.0.004093 PubMed DOI

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054 PubMed DOI PMC

Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443. https://doi.org/10.1128/jb.94.4.875-883.1967 DOI

Lee SD (2016) Paenibacillus cavernae sp. nov., isolated from soil of a natural cave. Int J Syst Evol Microbiol 66(2):598–603. https://doi.org/10.1099/ijsem.0.000762 DOI

Meier-Kolthof JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confdence intervals and improved distance functions. BMC Bioinfor 14:60. https://doi.org/10.1186/1471-2105-14-60 DOI

Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95. https://doi.org/10.1111/j.1365-2672.1979.tb01172.x DOI

Nam JH, Bae W, Lee DH (2008) Oceanobacillus caeni sp. nov., isolated from a Bacillus-dominated waste water treatment system in Korea. Int J Syst Evol Microbiol 58:1109–1113. https://doi.org/10.1099/ijs.0.65335-0 PubMed DOI

Narsing Rao MP, Dong ZY, Kan Y, Zhang K, Fang BZ, Xiao M, Kang YQ, Li WJ (2020) Description of Paenibacillus antri sp. nov. and Paenibacillus mesophilus sp. nov., isolated from cave soil. Int J Syst Evol Microbiol 70(2):1048–1054. https://doi.org/10.1099/ijsem.0.003870

Sáez-Nieto JA, Medina-Pascual MJ, Carrasco G, Garrido N, Fernandez-Torres MA, Villalón P, Valdezate S (2017) Paenibacillus spp. isolated from human and environmental samples in Spain: detection of 11 new species. New Microbes New Infect 19:19–27. https://doi.org/10.1016/j.nmni.2017.05.006

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 PubMed DOI

Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note, vol 10 1. MIDI Inc, Newark

Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K (1997) Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiamino-lyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47:289–298. https://doi.org/10.1099/00207713-47-2-289 PubMed DOI

Smibert R, Krieg NRM (1994) Phenotypic characterization. In: Gerhardt P, Murray RG, Wood WA

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033 PubMed DOI PMC

Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771. https://doi.org/10.1080/10635150802429642 PubMed DOI

Stansly PG, Schlosser ME (1947) Studies on Polymyxin: isolation and identification of Bacillus polymyxa and differentiation of Polymyxin from certain known antibiotics. J Bacteriol 54:549–556. https://doi.org/10.1128/jb.54.5.549-556.1947 PubMed DOI PMC

Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1986) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36. https://doi.org/10.1016/s0076-6879(86)23028-1 DOI

Tang SK, Wang Y, Chen Y, Lou K, Cao LL, Xu LH, Li WJ (2009) Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 59:2025–2032. https://doi.org/10.1099/ijs.0.007344-0 PubMed DOI

Tarrand JJ, Gröschel DH (1982) Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774. https://doi.org/10.1128/jcm.16.4.772-774.1982 PubMed DOI PMC

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. https://doi.org/10.1093/nar/25.24.4876 PubMed DOI PMC

Trinh NH, Kim J (2020) Paenibacillus piri sp. nov., isolated from urban soil. Int J Syst Evol Microbiol 70(1):656–661. https://doi.org/10.1099/ijsem.0.003811 PubMed DOI

Velazquez LF, Rajbanshi S, Guan S, Hinchee M, Welsh A (2020) Paenibacillus ottowii sp. nov. isolated from a fermentation system processing bovine manure. Int J Syst Evol Microbiol 70(3):1463–1469. https://doi.org/10.1099/ijsem.0.003672 PubMed DOI

Wang H, Hu D, Wang Z, Yang C, Zhu S, Gu C, Wang ET (2021) Paenibacillus glycinis sp. nov., an endophytic bacterium isolated from the nodules of soybean (Glycine max (L.) Merr). Curr Microbiol 78(4):1678–1685. https://doi.org/10.1007/s00284-021-02403-1 PubMed DOI

Wang M, Jiang XW, Tang SK, Zhi XY, Yang LL (2020) Paenibacillus paridis sp. nov., an endophytic bacterial species isolated from the root of Paris polyphylla Smith var. yunnanensis. Int J Syst Evol Microbiol 70(3):1940–1946. https://doi.org/10.1099/ijsem.0.003997 PubMed DOI

Wayne LG (1988) International Committee on Systematic Bacteriology: announcement of the report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Zentralbl Bakteriol Mikrobiol Hyg [a] 268(4):433–434. https://doi.org/10.1016/s0176-6724(88)80120-2 DOI

Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 55:1149–1153. https://doi.org/10.1099/ijs.0.63407-0 PubMed DOI

Yang L, Huang HW, Wang Y, Kou YR, Yin M, Li Y, Wang XQ, Zhao GF, Zhu WY, Tang SK (2021a) Paenibacillus turpanensis sp. nov., isolated from a salt lake of Turpan City in Xinjiang Province, north-west China. Arch Microbiol 203(1):77–83. https://doi.org/10.1007/s00203-020-02003-w PubMed DOI

Yang RJ, Zhou D, Wang QM, Wang XH, Zhang WJ, Zhuang L, Wang XJ, Yan L, Lv J, Sheng J (2021b) Paenibacillus puerhi sp. Nov., isolated from the rhizosphere soil of Pu-erh tea plants (Camellia sinensis var. assamica). Arch Microbiol 203(4):1375–1382. https://doi.org/10.1007/s00203-020-02135-z PubMed DOI

Yoon SH, Ha SM, Kwon S, Lim J, Chun J (2017) Introducing EzBio-Cloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...