Genetically Encoded Sensors to Study Metabolism in Drosophila
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- Carbohydrate transport, FRET, Genetically encoded metabolite sensors, Live imaging, Metabolism,
- MeSH
- biosenzitivní techniky * metody MeSH
- Drosophila genetika MeSH
- rezonanční přenos fluorescenční energie * metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The rather recent development of genetically encoded metabolite sensors has changed the way we can study metabolism in living cells, ex vivo tissues, and in vivo immensely. In recent years, these sensors have also been adapted for use in Drosophila tissues. Here, we describe a standard protocol to image such sensors in ex vivo Drosophila larval brains using the glucose sensor FLII12Pglu-700μδ6. The protocol, however, can be adapted for the use of other sensors, tissues, and can even be used in vivo.
Zobrazit více v PubMed
Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887 DOI
Adams SR, Harootunian AT, Buechler YJ et al (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349(6311):694–697 DOI
Belousov VV, Fradkov AF, Lukyanov KA et al (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 34(3):281–286 DOI
Sanford L, Palmer A (2017) Recent advances in development of genetically encoded fluorescent sensors. In: Methods in enzymology, pp 1–49
Chudakov DM, Matz MV, Lukyanov S et al (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90(3):1103–1163. https://pubmed.ncbi.nlm.nih.gov/20664080/ DOI
Palmer AE, Qin Y, Park JG et al (2011) Design and application of genetically encoded biosensors. Trends Biotechnol 29:144 DOI
San Martín A, Sotelo-Hitschfeld T, Lerchundi R et al (2014) Single-cell imaging tools for brain energy metabolism: a review. Neurophotonics 1(1):11004 DOI
Zaccolo M (2004) Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ Res 94(7):866–873, https://pubmed.ncbi.nlm.nih.gov/15087426/ DOI
Bajar BT, Wang ES, Zhang S et al (2016) A guide to fluorescent protein FRET pairs. Sensors (Basel) 16(9):1488 DOI
Kostyuk AI, Demidovich AD, Kotova DA et al (2019) Circularly permuted fluorescent protein-based indicators: history, principles, and classification. Int J Mol Sci 20:4200 DOI
Mehta S, Zhang Y, Roth RH et al (2018) Single-fluorophore biosensors for sensitive and multiplexed detection of signalling activities. Nat Cell Biol 2010(20):1215–1225 DOI
Daniels RW, Rossano AJ, Macleod GT et al (2014) Expression of multiple transgenes from a single construct using viral 2A peptides in drosophila. PLoS One 9:e100637 DOI
Fehr M, Lalonde S, Lager I et al (2003) In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. J Biol Chem 278:19127–19133 DOI
Takanaga H, Chaudhuri B, Frommer WB (2008) GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim Biophys Acta Biomembr 1778:1091–1099 DOI
Volkenhoff A, Hirrlinger J, Kappel JM et al (2018) Live imaging using a FRET glucose sensor reveals glucose delivery to all cell types in the Drosophila brain. J Insect Physiol 106:55–64 DOI
Doherty J, Logan MA, Taşdemir ÖE et al (2009) Ensheathing glia function as phagocytes in the adult Drosophila brain. J Neurosci 29:4768–4781 DOI
Stewart BA, Atwood HL, Renger JJ et al (1994) Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J Comp Physiol A 175:179–191 DOI
Macleod GT, Hegström-Wojtowicz M, Charlton MP et al (2002) Fast calcium signals in drosophila motor neuron terminals. J Neurophysiol 88:2659–2663 DOI
McMullen E, Weiler A, Becker HM et al (2021) Plasticity of carbohydrate transport at the blood-brain barrier. Front Behav Neurosci 14:271 DOI
Hertenstein H, McMullen E, Weiler A et al (2021) Starvation-induced regulation of carbohydrate transport at the blood–brain barrier is TGF-β-signaling dependent. elife 10:e62503 DOI