A comparative study of single-channel signal processing methods in fetal phonocardiography

. 2022 ; 17 (8) : e0269884. [epub] 20220819

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35984866

Fetal phonocardiography is a non-invasive, completely passive and low-cost method based on sensing acoustic signals from the maternal abdomen. However, different types of interference are sensed along with the desired fetal phonocardiography. This study focuses on the comparison of fetal phonocardiography filtering using eight algorithms: Savitzky-Golay filter, finite impulse response filter, adaptive wavelet transform, maximal overlap discrete wavelet transform, variational mode decomposition, empirical mode decomposition, ensemble empirical mode decomposition, and complete ensemble empirical mode decomposition with adaptive noise. The effectiveness of those methods was tested on four types of interference (maternal sounds, movement artifacts, Gaussian noise, and ambient noise) and eleven combinations of these disturbances. The dataset was created using two synthetic records r01 and r02, where the record r02 was loaded with higher levels of interference than the record r01. The evaluation was performed using the objective parameters such as accuracy of the detection of S1 and S2 sounds, signal-to-noise ratio improvement, and mean error of heart interval measurement. According to all parameters, the best results were achieved using the complete ensemble empirical mode decomposition with adaptive noise method with average values of accuracy = 91.53% in the detection of S1 and accuracy = 68.89% in the detection of S2. The average value of signal-to-noise ratio improvement achieved by complete ensemble empirical mode decomposition with adaptive noise method was 9.75 dB and the average value of the mean error of heart interval measurement was 3.27 ms.

Zobrazit více v PubMed

Kovács F, Horváth C,Balogh ÁT, Hosszú G. Fetal Phonocardiography—Past and Future Possibilities. Computer Methods and Programs in Biomedicine. 2011;104(1):19–25. doi: 10.1016/j.cmpb.2010.10.006 PubMed DOI

Hanna IR, Silverman ME. A History of Cardiac Auscultation and Some of Its Contributors. The American Journal of Cardiology. 2002;90(3):259–267. doi: 10.1016/S0002-9149(02)02465-7 PubMed DOI

Martinek R, Barnova K, Jaros R, Kahankova R, Kupka T, Jezewski M, et al.. Passive Fetal Monitoring by Advanced Signal Processing Methods in Fetal Phonocardiography. IEEE Access. 2020;8:221942–221962. doi: 10.1109/ACCESS.2020.3043496 DOI

Chetlur Adithya P, Sankar R, Moreno WA, Hart S. Trends in Fetal Monitoring through Phonocardiography: Challenges and Future Directions. Biomedical Signal Processing and Control. 2017;33:289–305. doi: 10.1016/j.bspc.2016.11.007 DOI

Cesarelli M, Ruffo M, Romano M, Bifulco P. Simulation of Foetal Phonocardiographic Recordings for Testing of FHR Extraction Algorithms. Computer Methods and Programs in Biomedicine. 2012;107(3):513–523. doi: 10.1016/j.cmpb.2011.11.008 PubMed DOI

Ganguly A, Sharma M. Detection of Pathological Heart Murmurs by Feature Extraction of Phonocardiogram Signals. Journal of Applied and Advanced Research. 2017; p. 200–205. doi: 10.21839/jaar.2017.v2i4.94 DOI

Kovács F, Kersner N, Kádár K, Hosszú G. Computer Method for Perinatal Screening of Cardiac Murmur Using Fetal Phonocardiography. Computers in Biology and Medicine. 2009;39(12):1130–1136. doi: 10.1016/j.compbiomed.2009.10.001 PubMed DOI

Balogh AT. Analysis of the Heart Sounds and Murmurs of Fetuses and Preterm Infants. Pazmany Peter Katolikus Egyetem; 2015.

Chourasia J, Chourasia V, Mittra AK. Prenatal Detection of Congenital Heart Defects: Study & Comparative Analysis of Existing Techniques. International Journal. 2017;5(2).

Ibrahim EA, Al Awar S, Balayah ZH, Hadjileontiadis LJ, Khandoker AH. A Comparative Study on Fetal Heart Rates Estimated from Fetal Phonography and Cardiotocography. Frontiers in Physiology. 2017;8:764. doi: 10.3389/fphys.2017.00764 PubMed DOI PMC

Mondal H, Mondal S, Saha K. Development of a Low-Cost Wireless Phonocardiograph With a Bluetooth Headset under Resource-Limited Conditions. Medical Sciences. 2018;6(4):117. doi: 10.3390/medsci6040117 PubMed DOI PMC

Kovács F, Török M, Horváth C, Balogh ÁT, Zsedrovits T, Nagy A, et al.. A New, Phonocardiography-Based Telemetric Fetal Home Monitoring System. Telemedicine and e-Health. 2010;16(8):878–882. doi: 10.1089/tmj.2010.0039 PubMed DOI

Sbrollini A, Strazza A, Caragiuli M, Mozzoni C, Tomassini S, Agostinelli A, et al. Fetal Phonocardiogram Denoising by Wavelet Transformation: Robustness to Noise. In: 2017 Computing in Cardiology Conference; 2017.

Vadali VABK. A Comparative Study of Signal Processing Methods for Fetal Phonocardiography Analysis. University of South Florida; 2018.

Tomassini S, Strazza A, Sbrollini A, Marcantoni I, Morettini M, Fioretti S, et al.. Wavelet Filtering of Fetal Phonocardiography: A Comparative Analysis. Mathematical Biosciences and Engineering. 2019;16(5):6034–6046. doi: 10.3934/mbe.2019302 PubMed DOI

Mittra AK, Choudhari NK. Time-frequency analysis of foetal heart sound signal for the prediction of prenatal anomalies. Journal of Medical Engineering & Technology. 2009-July-09;33(4):296–302. doi: 10.1080/03091900802454384 PubMed DOI

Koutsiana E, Hadjileontiadis LJ, Chouvarda I, Khandoker AH. Fetal Heart Sounds Detection Using Wavelet Transform and Fractal Dimension. Frontiers in Bioengineering and Biotechnology. 2017;5:49. doi: 10.3389/fbioe.2017.00049 PubMed DOI PMC

Vaisman S, Yaniv Salem S, Holcberg G, Geva AB. Passive Fetal Monitoring by Adaptive Wavelet Denoising Method. Computers in Biology and Medicine. 2012;42(2):171–179. doi: 10.1016/j.compbiomed.2011.11.005 PubMed DOI

Chourasia VS, Tiwari AK. Design Methodology of a New Wavelet Basis Function for Fetal Phonocardiographic Signals. The Scientific World Journal. 2013;2013:1–12. doi: 10.1155/2013/505840 PubMed DOI PMC

Jiménez-González A, James CJ. Extracting Sources from Noisy Abdominal Phonograms: A Single-Channel Blind Source Separation Method. Medical & Biological Engineering & Computing. 2009;47(6):655–664. doi: 10.1007/s11517-009-0474-8 PubMed DOI

Warbhe AD, Dharaskar RV, Kalambhe B. A Single Channel Phonocardiograph Processing Using EMD, SVD, and EFICA. In: 2010 3rd International Conference on Emerging Trends in Engineering and Technology. Goa: IEEE; 2010. p. 578–581.

Samieinasab M, Sameni R. Fetal Phonocardiogram Extraction Using Single Channel Blind Source Separation. In: 2015 23rd Iranian Conference on Electrical Engineering. Tehran, Iran: IEEE; 2015. p. 78–83.

Kovacs F, Horváth C,Balogh ÁT, Hosszú G. Extended Noninvasive Fetal Monitoring by Detailed Analysis of Data Measured With Phonocardiography. IEEE Transactions on Biomedical Engineering. 2011;58(1):64–70. doi: 10.1109/TBME.2010.2071871 PubMed DOI

Ruffo M, Cesarelli M, Romano M, Bifulco P, Fratini A. An Algorithm for FHR Estimation from Foetal Phonocardiographic Signals. Biomedical Signal Processing and Control. 2010;5(2):131–141. doi: 10.1016/j.bspc.2010.02.002 DOI

Soysa WNM, Godaliyadda RI, Wijayakulasooriya JV, Ekanayake MPB, Kandauda IC. Extraction and Analysis of Fetal Heart Signals with Abnormalities an Eigen-analysis Based Approach. In: 2013 IEEE 8th International Conference on Industrial and Information Systems. Peradeniya, Sri Lanka: IEEE; 2013. p. 294–299.

Dia N, Fontecave-Jallon J, Gumery PY, Rivet B. Fetal Heart Rate Estimation from a Single Phonocardiogram Signal Using Non-Negative Matrix Factorization. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany: IEEE; 2019. p. 5983–5986. PubMed

Huimin W, Xingyu L. Extraction Method of Fetal Phonocardiogram Based on Lifting Wavelet Analysis. Journal of Physics: Conference Series. 2020;1544(1):012103.

Zahorian SA, Zuckerwar AJ, Karnjanadecha M. Dual Transmission Model and Related Spectral Content of the Fetal Heart Sounds. Computer Methods and Programs in Biomedicine. 2012;108(1):20–27. doi: 10.1016/j.cmpb.2011.12.006 PubMed DOI

Dai W, Selesnick I, Rizzo JR, Rucker J, Hudson T. A Nonlinear Generalization of the Savitzky-Golay Filter and the Quantitative Analysis of Saccades. Journal of Vision. 2017;17(9):10. doi: 10.1167/17.9.10 PubMed DOI PMC

Ostertagova E, Ostertag O. Methodology and Application of Savitzky-Golay Moving Average Polynomial Smoother. Global J Pure Applied Math. 2016;12:3201–3210.

Orfanidis SJ. Introduction to Signal Processing. Pearson Education, Inc; 2016.

Zhdanov DS, Bureev AS, Kutsov MS, Kiseleva EY, Kistenev YV. Algorithm for Extraction of Fetal Heart Tones during Fetal Phonocardiography. Biol Med (Aligarh). 2015;7(3):2.

Wu JMT, Tsai MH, Huang YZ, Islam SH, Hassan MM, Alelaiwi A, et al.. Applying an Ensemble Convolutional Neural Network with Savitzky–Golay Filter to Construct a Phonocardiogram Prediction Model. Applied Soft Computing. 2019;78:29–40. doi: 10.1016/j.asoc.2019.01.019 DOI

Krishnan PT, Balasubramanian P, Umapathy S. Automated Heart Sound Classification System from Unsegmented Phonocardiogram (PCG) Using Deep Neural Network. Physical and Engineering Sciences in Medicine. 2020;43(2):505–515. doi: 10.1007/s13246-020-00851-w PubMed DOI

Marchon N. Efficient FIR Filters for Biomedical Signals. In: TENCON 2019—2019 IEEE Region 10 Conference (TENCON). Kochi, India: IEEE; 2019. p. 1947–1951.

Wulf M, Staude G, Knopp A, Felderhoff T. Efficient Design of FIR Filter Based Low-Pass Differentiators for Biomedical Signal Processing. Current Directions in Biomedical Engineering. 2016;2(1):215–219. doi: 10.1515/cdbme-2016-0048 DOI

Cherif LH, Mostafi M, Debbal SM. Digital Filters in Heart Sound Analysis. International Journal of Clinical Medicine Research. 2014;1(3):97–108.

Rafiee J, Rafiee MA, Prause N, Schoen MP. Wavelet Basis Functions in Biomedical Signal Processing. Expert Systems with Applications. 2011;38(5):6190–6201. doi: 10.1016/j.eswa.2010.11.050 DOI

Alarcon-Aquino V, Barria JA. Change Detection in Time Series Using the Maximal Overlap Discrete Wavelet Transform. Latin American applied research. 2009;39(2):145–152.

Starck JL, Fadili J, Murtagh F. The Undecimated Wavelet Decomposition and Its Reconstruction. IEEE Transactions on Image Processing. 2007;16(2):297–309. doi: 10.1109/TIP.2006.887733 PubMed DOI

Alkhodari M, Fraiwan L. Convolutional and Recurrent Neural Networks for the Detection of Valvular Heart Diseases in Phonocardiogram Recordings. Computer Methods and Programs in Biomedicine. 2021;200:105940. doi: 10.1016/j.cmpb.2021.105940 PubMed DOI

Dragomiretskiy K, Zosso D. Variational Mode Decomposition. IEEE Transactions on Signal Processing. 2014;62(3):531–544. doi: 10.1109/TSP.2013.2288675 DOI

Isham MF, Leong MS, Lim MH, Ahmad ZA. Variational Mode Decomposition: Mode Determination Method for Rotating Machinery Diagnosis. Journal of Vibroengineering. 2018;20(7):2604–2621. doi: 10.21595/jve.2018.19479 DOI

Sujadevi VG, Soman KP, Kumar SS, Mohan N, Arunjith AS. Denoising of Phonocardiogram Signals Using Variational Mode Decomposition. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). Udupi: IEEE; 2017. p. 1443–1446.

Nie Z. A Fetal Heart Sound Signal De-Noising Approach Based on VMD and JADE Algorithm. In: Proceedings of the 2018 International Conference on Network, Communication, Computer Engineering (NCCE 2018). Chongqing, China: Atlantis Press; 2018.

Ge H, Chen G, Yu H, Chen H, An F. Theoretical Analysis of Empirical Mode Decomposition. Symmetry. 2018;10(11):623. doi: 10.3390/sym10110623 DOI

Attoh-Okine N, Barner K, Bentil D, Zhang R. The Empirical Mode Decomposition and the Hilbert-Huang Transform. EURASIP Journal on Advances in Signal Processing. 2008;2008(1):251518, 2008/251518. doi: 10.1155/2008/251518 DOI

Lin J. Improved Ensemble Empirical Mode Decomposition Method and Its Simulation. In: Lee G, editor. Advances in Intelligent Systems. vol. 138. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 109–115.

Ismail S, Siddiqi I, Akram U. Localization and Classification of Heart Beats in Phonocardiography Signals —a Comprehensive Review. EURASIP Journal on Advances in Signal Processing. 2018;2018(1):26. doi: 10.1186/s13634-018-0545-9 DOI

Cheema A, Singh M. An Application of Phonocardiography Signals for Psychological Stress Detection Using Non-Linear Entropy Based Features in Empirical Mode Decomposition Domain. Applied Soft Computing. 2019;77:24–33. doi: 10.1016/j.asoc.2019.01.006 DOI

Ghosh PK, Poonia D. Comparison of Some EMD Based Technique for Baseline Wander Correction in Fetal ECG Signa. International Journal of Computer Applications. 2015;116(15):48–52. doi: 10.5120/20416-2836 DOI

Wu Z, Huang NE. Ensemble Empirical Mode Decomposition: A Noise-assisted Data Analysis Method. Advances in Adaptive Data Analysis. 2009;01(01):1–41. doi: 10.1142/S1793536909000047 DOI

Papadaniil CD, Hadjileontiadis LJ. Efficient Heart Sound Segmentation and Extraction Using Ensemble Empirical Mode Decomposition and Kurtosis Features. IEEE Journal of Biomedical and Health Informatics. 2014;18(4):1138–1152. doi: 10.1109/JBHI.2013.2294399 PubMed DOI

Jimenez JA, Becerra MA, Delgado-Trejos E. Heart Murmur Detection Using Ensemble Empirical Mode Decomposition and Derivations of the Mel-Frequency Cepstral Coefficients on 4-Area Phonocardiographic Signals. In: Computing in Cardiology 2014. IEEE; 2014. p. 493–496.

Colominas MA, Schlotthauer G, Torres ME. Improved Complete Ensemble EMD: A Suitable Tool for Biomedical Signal Processing. Biomedical Signal Processing and Control. 2014;14:19–29. doi: 10.1016/j.bspc.2014.06.009 DOI

Liu T, Luo Z, Huang J, Yan S. A Comparative Study of Four Kinds of Adaptive Decomposition Algorithms and Their Applications. Sensors. 2018;18(7):2120. doi: 10.3390/s18072120 PubMed DOI PMC

Cheng X, Wang P, She C. Biometric Identification Method for Heart Sound Based on Multimodal Multiscale Dispersion Entropy. Entropy. 2020;22(2):238. doi: 10.3390/e22020238 PubMed DOI PMC

Tu Z, Cao G, Li Q, Xianxia Zhang, Jun Shi. Improved Methods for Detecting Main Components of Heart Sounds. In: 2010 Sixth International Conference on Natural Computation. Yantai, China: IEEE; 2010. p. 3585–3588.

Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al.. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation. 2000;101(23). doi: 10.1161/01.CIR.101.23.e215 PubMed DOI

Barnova K, Kahankova R, Jaros R, Martinek R. Synthetic Abdominal PCG Signals and Extracted Fetal PCG Signals. 2022.

Billeci L, Varanini M. A Combined Independent Source Separation and Quality Index Optimization Method for Fetal ECG Extraction from Abdominal Maternal Leads. Sensors. 2017;17(5):1135. doi: 10.3390/s17051135 PubMed DOI PMC

Kupka T, Matonia A, Jezewski M, Jezewski J, Horoba K, Wrobel J, et al.. New Method for Beat-to-Beat Fetal Heart Rate Measurement Using Doppler Ultrasound Signal. Sensors. 2020;20(15):4079. doi: 10.3390/s20154079 PubMed DOI PMC

R: The R Project for Statistical Computing;. https://www.r-project.org/. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace