Mechanistic insight into the RNA-stimulated ATPase activity of tick-borne encephalitis virus helicase

. 2022 Oct ; 298 (10) : 102383. [epub] 20220817

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35987382
Odkazy

PubMed 35987382
PubMed Central PMC9490040
DOI 10.1016/j.jbc.2022.102383
PII: S0021-9258(22)00826-2
Knihovny.cz E-zdroje

The helicase domain of nonstructural protein 3 (NS3H) unwinds the double-stranded RNA replication intermediate in an ATP-dependent manner during the flavivirus life cycle. While the ATP hydrolysis mechanism of Dengue and Zika viruses NS3H has been extensively studied, little is known in the case of the tick-borne encephalitis virus NS3H. We demonstrate that ssRNA binds with nanomolar affinity to NS3H and strongly stimulates the ATP hydrolysis cycle, whereas ssDNA binds only weakly and inhibits ATPase activity in a noncompetitive manner. Thus, NS3H is an RNA-specific helicase, whereas DNA might act as an allosteric inhibitor. Using modeling, we explored plausible allosteric mechanisms by which ssDNA inhibits the ATPase via nonspecific binding in the vicinity of the active site and ATP repositioning. We captured several structural snapshots of key ATP hydrolysis stages using X-ray crystallography. One intermediate, in which the inorganic phosphate and ADP remained trapped inside the ATPase site after hydrolysis, suggests that inorganic phosphate release is the rate-limiting step. Using structure-guided modeling and molecular dynamics simulation, we identified putative RNA-binding residues and observed that the opening and closing of the ATP-binding site modulates RNA affinity. Site-directed mutagenesis of the conserved RNA-binding residues revealed that the allosteric activation of ATPase activity is primarily communicated via an arginine residue in domain 1. In summary, we characterized conformational changes associated with modulating RNA affinity and mapped allosteric communication between RNA-binding groove and ATPase site of tick-borne encephalitis virus helicase.

Zobrazit více v PubMed

Beauté J., Spiteri G., Warns-Petit E., Zeller H. Tick-borne encephalitis in Europe, 2012 to 2016. Euro. Surveill. 2018;23:1800201. PubMed PMC

Füzik T., Formanová P., Růžek D., Yoshii K., Niedrig M., Plevka P. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat. Commun. 2018;9:436. PubMed PMC

Ruzek D., Avsic Zupanc T., Borde J., Chrdle A., Eyer L., Karganova G., et al. Tick-borne encephalitis in Europe and Russia: review of pathogenesis, clinical features, therapy, and vaccines. Antivir. Res. 2019;164:23–51. PubMed

Brand C., Bisaillon M., Geiss B.J. Organization of the Flavivirus RNA replicase complex. Wiley Interdiscip. Rev. RNA. 2017;8 doi: 10.1002/wrna.1437. PubMed DOI PMC

Bollati M., Alvarez K., Assenberg R., Baronti C., Canard B., Cook S., et al. Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antivir. Res. 2010;87:125–148. PubMed PMC

Fairman-Williams M.E., Guenther U.P., Jankowsky E. SF1 and SF2 helicases: family matters. Curr. Opin. Struc Biol. 2010;20:313–324. PubMed PMC

Chen C., Han X., Wang F., Huang J., Zhang L., Wang Z., et al. Crystal structure of the NS3 helicase of tick-borne encephalitis virus. Biochem. Biophys. Res. Commun. 2020;528:601–606. PubMed

Du Pont K.E., Davidson R.B., McCullagh M., Geiss B.J. Motif V regulates energy transduction between the flavivirus NS3 ATPase and RNA-binding cleft. J. Biol. Chem. 2020;295:1551–1564. PubMed PMC

Davidson R.B., Hendrix J., Geiss B.J., McCullagh M. Allostery in the dengue virus NS3 helicase: insights into the NTPase cycle from molecular simulations. PLoS Comput. Biol. 2018;14 PubMed PMC

Fang J., Jing X., Lu G., Xu Y., Gong P. Crystallographic snapshots of the Zika virus NS3 helicase help visualize the reactant water replenishment. ACS Infect. Dis. 2019;5:177–183. PubMed

Luo D., Xu T., Watson R.P., Scherer-Becker D., Sampath A., Jahnke W., et al. Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein. EMBO J. 2008;27:3209–3219. PubMed PMC

Yamashita T., Unno H., Mori Y., Tani H., Moriishi K., Takamizawa A., et al. Crystal structure of the catalytic domain of Japanese encephalitis virus NS3 helicase/nucleoside triphosphatase at a resolution of 1.8 angstrom. Virology. 2008;373:426–436. PubMed

Wu J., Bera A.K., Kuhn R.J., Smith J.L. Structure of the flavivirus helicase: implications for catalytic activity, protein interactions, and proteolytic processing. J. Virol. 2005;79:10268–10277. PubMed PMC

Mastrangelo E., Milani M., Bollati M., Selisko B., Peyrane F., Pandini V., et al. Crystal structure and activity of Kunjin virus NS3 helicase; protease and helicase domain assembly in the full length NS3 protein. J. Mol. Biol. 2007;372:444–455. PubMed

Swarbrick C.M.D., Basavannacharya C., Chan K.W.K., Chan S.A., Singh D., Wei N., et al. NS3 helicase from dengue virus specifically recognizes viral RNA sequence to ensure optimal replication. Nucl. Acids Res. 2017;45:12904–12920. PubMed PMC

Yang X., Chen C., Tian H., Chi H., Mu Z., Zhang T., et al. Mechanism of ATP hydrolysis by the Zika virus helicase. FASEB J. 2018;32:5250–5257. PubMed

Tian H.L., Ji X.Y., Yang X.Y., Zhang Z.X., Lu Z.K., Yang K.L., et al. Structural basis of Zika virus helicase in recognizing its substrates. Protein Cell. 2016;7:562–570. PubMed PMC

Sarto C., Kaufman S.B., Estrin D.A., Arrar M. Nucleotide-dependent dynamics of the Dengue NS3 helicase. Biochim. Biophys. Acta Proteins Proteom. 2020;1868 PubMed

Wang Q., Arnold J.J., Uchida A., Raney K.D., Cameron C.E. Phosphate release contributes to the rate-limiting step for unwinding by an RNA helicase. Nucl. Acids Res. 2010;38:1312–1324. PubMed PMC

Benarroch D., Selisko B., Locatelli G.A., Maga G., Romette J.L., Canard B. The RNA helicase, nucleotide 5'-triphosphatase, and RNA 5'-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology. 2004;328:208–218. PubMed

Gwack Y., Kim D.W., Han J.H., Choe J. DNA helicase activity of the hepatitis C virus nonstructural protein 3. Eur. J. Biochem. 1997;250:47–54. PubMed

Wang C.C., Huang Z.S., Chiang P.L., Chen C.T., Wu H.N. Analysis of the nucleoside triphosphatase, RNA triphosphatase, and unwinding activities of the helicase domain of dengue virus NS3 protein. FEBS Lett. 2009;583:691–696. PubMed

Li L., Wang J., Jia Z., Shaw N. Structural view of the helicase reveals that Zika virus uses a conserved mechanism for unwinding RNA. Acta Crystallogr. F Struct. Biol. Commun. 2018;74:205–213. PubMed PMC

Holm L. DALI and the persistence of protein shape. Protein Sci. 2020;29:128–140. PubMed PMC

Crampton D.J., Guo S.Y., Johnson D.E., Richardson C.C. The arginine finger of bacteriophage T7 gene 4 helicase: role in energy coupling. Proc. Natl. Acad. Sci. U. S. A. 2004;101:4373–4378. PubMed PMC

Hornak V., Abel R., Okur A., Strockbine B., Roitberg A., Simmerling C. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins-Struct. Funct. Bioinform. 2006;65:712–725. PubMed PMC

Rudack T., Xia F., Schlitter J., Kotting C., Gerwert K. Ras and GTPase-activating protein (GAP) drive GTP into a precatalytic state as revealed by combining FTIR and biomolecular simulations. Proc. Natl. Acad. Sci. U. S. A. 2012;109:15295–15300. PubMed PMC

Dumont S., Cheng W., Serebrov V., Beran R.K., Tinoco I., Jr., Pyle A.M., et al. RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature. 2006;439:105–108. PubMed PMC

Gu M., Rice C.M. Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism. Proc. Natl. Acad. Sci. U. S. A. 2010;107:521–528. PubMed PMC

Pyle A.M. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu. Rev. Biophys. 2008;37:317–336. PubMed

Mallam A.L., Sidote D.J., Lambowitz A.M. Molecular insights into RNA and DNA helicase evolution from the determinants of specificity for a DEAD-box RNA helicase. Elife. 2014;3 PubMed PMC

Pal A., Levy Y. Structure, stability and specificity of the binding of ssDNA and ssRNA with proteins. PLoS Comput. Biol. 2019;15 PubMed PMC

Mueller U., Forster R., Hellmig M., Huschmann F.U., Kastner A., Malecki P., et al. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: current status and perspectives. Eur. Phys. J. Plus. 2015;130:141.

Kabsch W. Xds. Acta Crystallogr. D. 2010;66:125–132. PubMed PMC

Sparta K.M., Mueller U., Heinemann U., Weiss M.S. The automated expert processing system XDSAPP. Acta Crystallogr. A. 2016;72 doi: 10.1107/S2053273316097151. DOI

Vagin A., Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr. D. 2010;66:22–25. PubMed

Potterton L., Agirre J., Ballard C., Cowtan K., Dodson E., Evans P.R., et al. CCP4i2: the new graphical user interface to the CCP4 program suite. Acta Crystallogr. Sect. D-Struct. Biol. 2018;74:68–84. PubMed PMC

Painter J., Merritt E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 2006;62:439–450. PubMed

Murshudov G.N., Skubak P., Lebedev A.A., Pannu N.S., Steiner R.A., Nicholls R.A., et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 2011;67:355–367. PubMed PMC

Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Crystallogr. D. 2010;66:486–501. PubMed PMC

Chen V.B., Arendall W.B., Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D-Struct. Biol. 2010;66:12–21. PubMed PMC

DeLano W.L. DeLano Scientific LLC; San Carlos, CA: 2002. The PyMOL Molecular Graphics System.

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., et al. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. PubMed

Van der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A.E., Berendsen H.J.C. GROMACS: fast, flexible, and free. J. Comput. Chem. 2005;26:1701–1718. PubMed

Berendsen H.J.C., Postma J.P.M., Vangunsteren W.F., Dinola A., Haak J.R. Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690.

Parrinello M., Rahman A. A molecular-dynamics study of crystal-structure transformations. B Am. Phys. Soc. 1981;26

Wang J.M., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. PubMed

Wang J.M., Wang W., Kollman P.A., Case D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graphics Model. 2006;25:247–260. PubMed

Still W.C., Tempczyk A., Hawley R.C., Hendrickson T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 1990;112:6127–6129.

Robert X., Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucl. Acids Res. 2014;42:W320–W324. PubMed PMC

Ashkenazy H., Abadi S., Martz E., Chay O., Mayrose I., Pupko T., et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44:W344–W350. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...