Toxicity Assessment and Treatment Options of Diclofenac and Triclosan Dissolved in Water
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN01000048
Technology Agency of the Czech Republic
PubMed
36006101
PubMed Central
PMC9415529
DOI
10.3390/toxics10080422
PII: toxics10080422
Knihovny.cz E-zdroje
- Klíčová slova
- Aliivibrio fischeri, Raphidocelis subcapitata, cleaning up, ecotoxicity, personal care products, pharmaceuticals, photocatalysis, sorption,
- Publikační typ
- časopisecké články MeSH
The presence of pharmaceutical and personal care products in water is increasing tremendously nowadays. Typical representatives are diclofenac (DCF) and triclosan (TCS). Acute toxicity of these substances was experimentally assessed using the freshwater algae Raphidocelis subcapitata (living, immobilized). The IC50 achieved for R. subcapitata was 177.7-189.1 mg·L-1 for DCF and 5.4-17.2 µg·L-1 for TCS, whereas, regarding DCF, the results corresponded to the values observed by other authors. Concerning TCS, the results were lower than predicted and indicated TCSs' higher toxicity. The immobilized R. subcapitata showed comparable results with its living culture for DCF only. Regarding K2Cr2O7 and TCS, the immobilized alga was more sensitive. The DCF and TCF removal from water was tested by sorption, photocatalytic and photolytic processes. TiO2 was used as a photocatalyst. Norit and SuperSorbon were used as sorbents based on activated charcoal. The DCF decomposition achieved by both photo-processes was very fast. The starting concentration fell below the detection limit in less than one minute, while bioluminescence on Aliivibrio fischeri showed no toxic intermediates formed only in the case of photocatalysis. DCF and TCS removals by sorption were significantly faster on Norit than SuperSorbon, while the bioluminescence inhibition remained insignificant.
Zobrazit více v PubMed
Cvetnić M., Novak S.M., Kovačić M., Ukić Š., Bolanča T., Kušić H., Rasulev B., Dionysiou D.D., Lončarić Božić A. Key structural features promoting radical driven degradation of emerging contaminants in water. Environ. Int. 2019;124:38–48. doi: 10.1016/j.envint.2018.12.043. PubMed DOI
Zhou Y., Meng J., Zhang M., Chen S., He B., Zhao H., Li Q., Zhang S., Wang T. Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants? Environ. Int. 2019;131:104982. doi: 10.1016/j.envint.2019.104982. PubMed DOI
Daughton C.G., Ternes T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 1999;107:907–938. doi: 10.1289/ehp.99107s6907. PubMed DOI PMC
Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol. Lett. 2002;131:5–17. doi: 10.1016/S0378-4274(02)00041-3. PubMed DOI
Fent K., Weston A.A., Caminada D. Ecotoxicology of human pharmaceuticals. Aquatic Toxicol. 2006;76:122–159. doi: 10.1016/j.aquatox.2005.09.009. PubMed DOI
Kümmerer K., editor. Sources, Fate, Effects and Risks. 3rd ed. Springer; Berlin/Heidelberg, Germany: 2008. Pharmaceuticals in the environment sources; p. 521.
Diniz M.S., Salgado R., Pereira V.J., Carvalho G., Oehmen A., Reis M.A.M., Noronha J.P. Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis by products in zebrafish (Danio rerio) Sci. Total Environ. 2015;505:282–289. doi: 10.1016/j.scitotenv.2014.09.103. PubMed DOI
Cleuvers M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol. Lett. 2003;142:185–194. doi: 10.1016/S0378-4274(03)00068-7. PubMed DOI
Alessandretti I., Rigueto C.V.T., Nazari M.T., Rosseto M., Dettmer A. Removal of diclofenac from wastewater: A comprehensive review of detection, characteristics and tertiary treatment techniques. J. Environ. Chem. Eng. 2021;9:2213–3437. doi: 10.1016/j.jece.2021.106743. DOI
Cuklev F., Fick J., Cvijovic M., Kristiansson E., Förlin L., Larsson D.G.J. Does ketoprofen of diclofenac pose the lower risk to fish? J. Hazard. Mater. 2012;229–230:100–106. doi: 10.1016/j.jhazmat.2012.05.077. PubMed DOI
Hoeger B., Köllner B., Dietrich D.R., Hitzfeld B. Water-borne diclofenac kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f. fario). . Aquatic Tox. 2005;75:53–64. doi: 10.1016/j.aquatox.2005.07.006. PubMed DOI
Ferrari B., Paxéus N., Giudice R.L., Pollio A., Garric J. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: Study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol Environ. Saf. 2003;55:359–370. doi: 10.1016/S0147-6513(02)00082-9. PubMed DOI
Parollini M., Quinn B., Binelli A., Provini A. Cytotoxicity assessment of four pharmaceutical compounds on the zebra mussel (Dreissena polymopha) haemocytes, gill and digestive gland primary cell cultures. Chemosphere. 2011;84:91–100. doi: 10.1016/j.chemosphere.2011.02.049. PubMed DOI
Prášková E., Voslářová E., Široká Z., Plhalová L., Macová S., Maršálek P., Pištěková V., Svobodová Z. Assessment of diclofenac LC50 reference values in juvenile ad embryonic stages of the zebrafish (Danio rerio) Pol. J. Vet. Sci. 2011;14:545–549. doi: 10.2478/v10181-011-0081-0. PubMed DOI
Peng Y., Luo Y., Nie X.P., Liao W., Yang Y.F., Ying G.G. Toxic effect of triclosan on the detoxification system and breeding of Daphnia magna. Ecotoxicology. 2013;22:1384–1394. doi: 10.1007/s10646-013-1124-3. PubMed DOI
Orvos R.D., Versteeg D.J., Inauen J., Capdevielle M., Rothenstein A., Cunningham V. Aquatic toxicity of triclosan. Environ. Toxicol. Chem. 2002;21:1338–1349. doi: 10.1002/etc.5620210703. PubMed DOI
Kumar K.R., Rohini P., Md A.R., Devi Y.P. A review on occurrence, fate and toxicity of triclosan. J. Pharm. Pharmaceut. Sci. 2015;4:336–369.
Kolpin D.W., Furlong E.T., Meyer M.T., Thurman E.M., Zaugg S.D., Barber L.B., Buxton H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ. Sci Technol. 2002;36:1202–1211. doi: 10.1021/es011055j. PubMed DOI
Xu W., Zhang G., Zou S., Li X., Liu Y. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electron-stray ionization tandem mass spectrometry. Environ. Pollut. 2007;145:672–679. doi: 10.1016/j.envpol.2006.05.038. PubMed DOI
Zhao J.L., Zhang Q.Q., Chen F., Wang L., Ying G.G., Liu Y.S., Yang B., Zhou L.J., Liu D., Su H.C., et al. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modelling tools: Implications for controlling of urban domestic sewage discharge. Water Res. 2013;47:395–405. doi: 10.1016/j.watres.2012.10.022. PubMed DOI
Reiss R., Mackay N., Habig C., Griffin J. An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ. Toxicol. Chem. 2002;21:2483–2492. doi: 10.1002/etc.5620211130. PubMed DOI
Farré M., Aperger D., Kantiani L., González S., Petrovic M., Barceló D. Assessment of the acute toxicity of triclosan and methyl triclosan in wastewater based on the bioluminescence inhibition of Vibrio fischeri. Anal. Bioanal Chem. 2008;390:1999–2007. doi: 10.1007/s00216-007-1779-9. PubMed DOI
Ishibashi H., Matsumura N., Hirano M., Matsuoka M., Shiratsuchi H., Ishibashi Y., Takao Y., Arizono K. Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquatic Toxicol. 2004;67:167–179. doi: 10.1016/j.aquatox.2003.12.005. PubMed DOI
Yang L.H., Ying G.G., Su H.C., Stauber J.L., Adams M.S., Binet M.T. Growth inhibiting effects of twelve antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapita. Environ. Toxicol Chem. 2008;27:1201–1208. doi: 10.1897/07-471.1. PubMed DOI
Chalew T.E.A., Halden R.U. Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban. J. Am. Water Resour. Assoc. (JAWRA) 2009;45:4–13. doi: 10.1111/j.1752-1688.2008.00284.x. PubMed DOI PMC
Sathya U., Keerthi N.M., Balasubramanian N. Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment. J. Environ. Manag. 2019;246:768–775. doi: 10.1016/j.jenvman.2019.06.039. PubMed DOI
Canonica S., Meunier L., Von Gunten U. Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Res. 2008;42:121–128. doi: 10.1016/j.watres.2007.07.026. PubMed DOI
Rosario-Ortiz F.L., Wert E.C., Snyder S.A. Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater. Water Res. 2010;44:1440–1448. doi: 10.1016/j.watres.2009.10.031. PubMed DOI
Bi L., Chen Z., Li L., Kang J., Zhao S., Wang B., Yan P., Li Y., Zhang X., Shen J. Selective adsorption and enhanced photodegradation of diclofenac in water by molecularly imprinted TiO2. J. Hazard. Mater. 2021;407:124759. doi: 10.1016/j.jhazmat.2020.124759. PubMed DOI
Coelho A.D., Sans C., Aguera A., Gomez M.J., Esplugas S., Dezotti M. Effects of ozone pretreatment on diclofenac: Intermediates, biodegradability and toxicity assessment. Sci. Total Environ. 2009;407:3572–3578. doi: 10.1016/j.scitotenv.2009.01.013. PubMed DOI
Salgado R., Pereira V.J., Carvalho G., Soeiro R., Gaffney V., Almeida C. Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater. J. Hazard. Mater. 2013;244:516–527. doi: 10.1016/j.jhazmat.2012.10.039. PubMed DOI
Stevens K.J., Seon-Young K., Adhikari S., Vadapalli V., Barney J.V. Effects of triclosan on seed germination and seedling development of three wetland platns: Sesbania herbacea, Eclipta prostrata, and Bidens frondosa. Environ. Toxicol. Chem. 2009;28:2598–2609. doi: 10.1897/08-566.1. PubMed DOI
De Oliveira T., Guégan R., Thiebault T., Le Milbeau C., Muller F., Teixeira V., Giovanela M., Boussafir M. Adsorption of diclofenac onto organoclays: Effects of surfactant and environmental (pH and temperature) conditions. Pt AJ. Hazard. Mater. 2017;323:558–566. doi: 10.1016/j.jhazmat.2016.05.001. PubMed DOI
Wu L., Du C., He J., Yang Z., Li H. Effective adsorption of diclofenac sodium from neutral aqueous solution by low-cost lignite activated cokes. J. Hazard. Mater. 2020;384:121284. doi: 10.1016/j.jhazmat.2019.121284. PubMed DOI
Piai L., Blokland M., van der Wal A., Langenhoff A. Biodegradation and adsorption of micropollutants by biological activated carbon from a drinking water production plant. J. Hazard. Mater. 2020;388:122028. doi: 10.1016/j.jhazmat.2020.122028. PubMed DOI
CCALA, ©2020: 433 Raphidocelis Subcapitata (Korshikov) Nygaard et al. [(accessed on 15 November 2020)]. Available online: https://ccala.butbn.cas.cz/sites/default/files/styles/ccala_thumb/public/ccala_collection/13661/1352919849-433.jpg.
Water Quality—Fresh Water Algal Growth Inhibition Test with Unicellular Green Algae. ISO Publishing; Geneva, Switzerland: 2012. [(accessed on 20 November 2020)]. 21p. Available online: https://www.iso.org/obp/ui/#iso:std:iso:8692:en.
OECD . OECD Guidelines for the Testing of Chemicals. OECD Publishing; Paris, France: 2011. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test. Section 2. DOI
Standard on the Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio Fischeri (Luminescent Bacteria Test)—Part 2: Method Using Liquid-Dried Bacteria. ISO Publishing; Geneva, Switzerland: [(accessed on 20 January 2021)]. p. 22. Available online: https://www.iso.org/obp/ui/#iso:std:iso:11348:-2:ed-2:v1:en.
Solcova O., Spacilova L., Maleterova Y., Morozova M., Ezechias M., Kresinova Z. Photocatalytic water treatment on TiO2 thin layers. Desalination Water Treat. 2016;57:11631–11638. doi: 10.1080/19443994.2015.1049964. DOI
Kluson P., Kacer P., Cajthaml T., Kalaji M. Titania thin films and supported nanostructured membranes prepared by the surfactant assisted sol-gel method. J. Mater. Chem. 2001;11:644–651. doi: 10.1039/b004760k. DOI
Santos M.A., Vicensotti J., Monteiro R. Sensitivity of four test organisms (Chironomus xanthus, Daphnia magna, Hydra attenuata and Pseudokirchneriella subcapitata) to NaCl: An alternative reference toxicant. J. Bras. Soc. Ecotoxicol. 2007;2:229–236. doi: 10.5132/jbse.2007.03.004. DOI
Doležalová Weissmannová H., Pavovský J., Fišerová L., Kosárová H. Toxicity of diclofenac: Cadmium binary mixtures to algae Desmodesmus subspicatus using normalization method. Bull. Environ. Contam Toxicol. 2018;101:205–213. doi: 10.1007/s00128-018-2384-7. PubMed DOI
Tatarazako N., Ishibashi H., Teshima K., Kishi K., Arizono K. Effects of triclosan on various aquatic organisms. Environ. Sci. 2004;11:133–140. PubMed
Al-Hasawi Z.M., Abdel-Hamid M.I., Almutairi A.W., Touliabah H.E. Response of Pseudokirchneriella subcapitata in free and alginate immobilized cells to heavy metals toxicity. Molecules. 2020;25:2847. doi: 10.3390/molecules25122847. PubMed DOI PMC
Bozeman J., Koopman B., Bitton G. Toxicity testing using immobilized algae. Aquatic Toxicol. 1989;14:345–352. doi: 10.1016/0166-445X(89)90032-5. DOI
Moreno-Garrido I. Microalgae immobilization: Current techniques and uses. Bioresour Technol. 2008;99:3949–3964. doi: 10.1016/j.biortech.2007.05.040. PubMed DOI
Zhang Y., Geissen S.-U., Gal C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere. 2008;73:1151–1161. doi: 10.1016/j.chemosphere.2008.07.086. PubMed DOI
Klavarioti M., Mantzavinos D., Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 2009;35:402–417. doi: 10.1016/j.envint.2008.07.009. PubMed DOI
Anucha C.B., Altin I., Bacaksiz E., Stathopoulos V.N. Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chem. Eng. J. A. 2022;10:100262. doi: 10.1016/j.ceja.2022.100262. DOI
Tsang C.H.A., Li K., Zeng Y., Zhao W., Zhang T., Zhan Y., Xie R., Leung D.Y.C., Huang H. Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. Environ. Int. 2019;125:200–228. doi: 10.1016/j.envint.2019.01.015. PubMed DOI
Solcova O., Spacilova L., Caklova M., Dytrych P., Maleterova Y., Bumba J., Kastanek F., Hanika J. The role of titania layers in decomposition of endocrine disruptors under UV Light. J. Sol. Gel Sci. Technol. 2018;88:22–32. doi: 10.1007/s10971-018-4654-6. DOI
Da Silva T.L., Costa C.S.D., Da Silva M.G.C., Vieira M.G.A. Overview of non-steroidal anti-inflammatory drugs degradation by advanced oxidation processes. J. Clean. Prod. 2022;346:131226. doi: 10.1016/j.jclepro.2022.131226. DOI
Graumans M.H.F., Van Hove H., Schirris T., Hoeben W.F.L.M., Van Dael M.F.P., Anzion R.B.M., Russel F.G.M., Scheepers P.T.J. Determination of cytotoxicity following oxidative treatment of pharmaceutical residues in wastewater. Chemosphere. 2022;303:135022. doi: 10.1016/j.chemosphere.2022.135022. PubMed DOI