Mycoremediation of Flotation Tailings with Agaricus bisporus

. 2022 Aug 22 ; 8 (8) : . [epub] 20220822

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36012872

Due to their enzymatic and bioaccumulation faculties the use of macromycetes for the decontamination of polluted matrices seems reasonable for bioremediation. For this reason, the aim of our study was to evaluate the mycoremediation ability of Agaricus bisporus cultivated on compost mixed with flotation tailings in different quantities (1, 5, 10, 15, and 20% addition). The biomass of the fruit bodies and the content of 51 major and trace elements were determined. Cultivation of A. bisporus in compost moderately polluted with flotation tailings yielded significantly lower (the first flush) and higher (the second flush) biomass of fruit bodies, compared with the control treatment. The presence of toxic trace elements did not cause any visible adverse symptoms for A. bisporus. Increasing the addition of flotation tailings to the compost induced an elevated level of most determined elements. A significant increase in rare earth elements (both flushes) and platinum group elements (first flush only) was observed. The opposite situation was recorded for major essential elements, except for Na and Mg in A. bisporus from the second flush under the most enriched compost (20%). Nevertheless, calculated bioaccumulation factor values showed a selective accumulation capacity-limited for toxic elements (except for Ag, As, and Cd) and the effective accumulation of B, Cu, K, and Se. The obtained results confirmed that A. bisporus can be used for practical application in mycoremediation in the industry although this must be preceded by larger-scale tests. This application seems to be the most favorable for media contaminated with selected elements, whose absorption by fruiting bodies is the most efficient.

Zobrazit více v PubMed

Gupta S., Wali A., Gupta M., Annepu S.K. Fungi: An Effective Tool for Bioremediation. Plant-Microbe Interact. Agro-Ecol. Perspect. 2017;2:593–606. doi: 10.1007/978-981-10-6593-4_24/COVER. DOI

Kaur P., Balomajumder C. Effective Mycoremediation Coupled with Bioaugmentation Studies: An Advanced Study on Newly Isolated Aspergillus sp. in Type-II Pyrethroid-Contaminated Soil. Environ. Pollut. 2020;261:114073. doi: 10.1016/j.envpol.2020.114073. PubMed DOI

Ngadin A.A., Taghavi E., Eaton T. Applied Mycology. Springer; Cham, Switzerland: 2022. The Development of White-Rot Fungi as a Mycoremediation Product; pp. 75–94. DOI

Hegde G.M., Aditya S., Wangdi D., Chetri B.K. Fungal Diversity, Ecology and Control Management. Springer; Singapore: 2022. Mycoremediation: A Natural Solution for Unnatural Problems; pp. 363–386. DOI

Shourie A., Vijayalakshmi U. Fungal Diversity and Its Role in Mycoremediation. Geomicrobiol. J. 2022;39:426–444. doi: 10.1080/01490451.2022.2032883. DOI

Dey P., Malik A., Singh D.K., Haange S.-B., von Bergen M., Jehmlich N. Insight into the Molecular Mechanisms Underpinning the Mycoremediation of Multiple Metals by Proteomic Technique. Front. Microbiol. 2022;13:872576. doi: 10.3389/fmicb.2022.872576. PubMed DOI PMC

Kumar V., Dwivedi S.K. Mycoremediation of Heavy Metals: Processes, Mechanisms, and Affecting Factors. Environ. Sci. Pollut. Res. 2021;28:10375–10412. doi: 10.1007/s11356-020-11491-8. PubMed DOI

Purohit J., Chattopadhyay A., Biswas M.K., Singh N.K. Mycoremediation and Environmental Sustainability. Springer; Cham, Switzerland: 2018. Mycoremediation of Agricultural Soil: Bioprospection for Sustainable Development; pp. 91–120. DOI

Akhtar N., Mannan M.A.U. Mycoremediation: Expunging Environmental Pollutants. Biotechnol. Rep. 2020;26:e00452. doi: 10.1016/j.btre.2020.e00452. PubMed DOI PMC

Koul B., Ahmad W., Singh J. Microbe Mediated Remediation of Environmental Contaminants. Woodhead Publishing; Cambridge, UK: 2021. Mycoremediation: A Novel Approach for Sustainable Development; pp. 409–420. DOI

Dey P., Malik A., Mishra A., Singh D.K., von Bergen M., Jehmlich N. Mechanistic Insight to Mycoremediation Potential of a Metal Resistant Fungal Strain for Removal of Hazardous Metals from Multimetal Pesticide Matrix. Environ. Pollut. 2020;262:114255. doi: 10.1016/j.envpol.2020.114255. PubMed DOI

Bosco F., Mollea C. Environmental Chemistry and Recent Pollution Control Approaches. IntechOpen; London, UK: 2019. Mycoremediation in Soil. DOI

Prasad Y., Sachin D. Biosorption of Cu, Zn, Fe, Cd, Pb and Ni by Non-Treated Biomass of Some Edible Mushrooms. Asian J. Exp. Biol. Sci. 2013;4:190–195.

Akinyele J.B., Fakoya S., Adetuyi C.F. Anti-Growth Factors Associated with Pleurotus Ostreatus in a Submerged Liquid Fermentation. Malays. J. Microbiol. 2012;8:135–140. doi: 10.21161/mjm.03912. DOI

Corral-Bobadilla M., González-Marcos A., Alba-Elías F., Diez de Santo Domingo E. Valorization of Bio-Waste for the Removal of Aluminum from Industrial Wastewater. J. Clean. Prod. 2020;264:121608. doi: 10.1016/j.jclepro.2020.121608. DOI

Corral-Bobadilla M., González-Marcos A., Vergara-González E.P., Alba-Elías F. Bioremediation of Waste Water to Remove Heavy Metals Using the Spent Mushroom Substrate of Agaricus bisporus. Water. 2019;11:454. doi: 10.3390/w11030454. DOI

Hanif M.A., Bhatti H.N. Remediation of Heavy Metals Using Easily Cultivable, Fast Growing, and Highly Accumulating White Rot Fungi from Hazardous Aqueous Streams. Desalination Water Treat. 2015;53:238–248. doi: 10.1080/19443994.2013.848413. DOI

Vaseem H., Singh V.K., Singh M.P. Heavy Metal Pollution Due to Coal Washery Effluent and Its Decontamination Using a Macrofungus, Pleurotus ostreatus. Ecotoxicol. Environ. Saf. 2017;145:42–49. doi: 10.1016/j.ecoenv.2017.07.001. PubMed DOI

Kapahi M., Sachdeva S. Mycoremediation Potential of Pleurotus Species for Heavy Metals: A Review. Bioresour. Bioprocess. 2017;4:32. doi: 10.1186/s40643-017-0162-8. PubMed DOI PMC

Boopathy R. Factors Limiting Bioremediation Technologies. Bioresour. Technol. 2000;74:63–67. doi: 10.1016/S0960-8524(99)00144-3. DOI

Puglisi I., Faedda R., Sanzaro V., lo Piero A.R., Petrone G., Cacciola S.O. Identification of Differentially Expressed Genes in Response to Mercury I and II Stress in Trichoderma Harzianum. Gene. 2012;506:325–330. doi: 10.1016/j.gene.2012.06.091. PubMed DOI

Pihurov M., Vlăduț V., Bordean D., Ferdes M. Mycoremediation of Heavy Metal-Contaminated Soil; Proceedings of the International Symposium, ISB-INMA-TEH, Agricultural and Mechanical Engineering; Bucharest, Romania. 31 October–1 November 2019; Bucharest, Romania: INMA; 2019. pp. 423–428.

Bhatt P., Chen S. Mycoremediation Protocols. Humana; New York, NY, USA: 2022. Optimization of Mycoremediation Process for the Isolated Fungi; pp. 101–107. DOI

Robichaud K., Girard C., Dagher D., Stewart K., Labrecque M., Hijri M., Amyot M. Local Fungi, Willow and Municipal Compost Effectively Remediate Petroleum-Contaminated Soil in the Canadian North. Chemosphere. 2019;220:47–55. doi: 10.1016/j.chemosphere.2018.12.108. PubMed DOI

Damodaran D., Suresh G., Mohan R. Proceedings of the 2011 2nd International Conference on Environmental Science and Technology IPCBEE. Volume 6. IACSIT Press; Singapore: 2011. Bioremediation of soil by removing heavy metals using Saccharomyces Cerevisiae; pp. 22–27.

Gray S.N. Fungi as Potential Bioremediation Agents in Soil Contaminated with Heavy or Radioactive Metals. Biochem. Soc. Trans. 1998;26:666–670. doi: 10.1042/bst0260666. PubMed DOI

Damodaran D., Vidya Shetty K., Raj Mohan B. Uptake of Certain Heavy Metals from Contaminated Soil by Mushroom—Galerina vittiformis. Ecotoxicol. Environ. Saf. 2014;104:414–422. doi: 10.1016/j.ecoenv.2013.10.033. PubMed DOI

Sithole S.C., Mugivhisa L.L., Amoo S.O., Olowoyo J.O. Pattern and Concentrations of Trace Metals in Mushrooms Harvested from Trace Metal-Polluted Soils in Pretoria, South Africa. S. Afr. J. Bot. 2017;108:315–320. doi: 10.1016/j.sajb.2016.08.010. DOI

Rhodes C.J. Mycoremediation (Bioremediation with Fungi)—Growing Mushrooms to Clean the Earth. Chem. Speciat. Bioavailab. 2015;26:196–198. doi: 10.3184/095422914X14047407349335. DOI

Bilal M., Park I., Hornn V., Ito M., Hassan F.U., Jeon S., Hiroyoshi N. The Challenges and Prospects of Recovering Fine Copper Sulfides from Tailings Using Different Flotation Techniques: A Review. Minerals. 2022;12:586. doi: 10.3390/min12050586. DOI

Qu G., Chen B., Zhang D., Wu F., Jin C., Li H., Liu S., Li Y., Qin J. Pollutants’ Migration and Transformation Behavior in Phosphorus Ore Flotation Tailings Treated with Different Additives. Appl. Geochem. 2022;143:105358. doi: 10.1016/j.apgeochem.2022.105358. DOI

Antonijević M.M., Dimitrijević M.D., Stevanović Z.O., Serbula S.M., Bogdanovic G.D. Investigation of the Possibility of Copper Recovery from the Flotation Tailings by Acid Leaching. J. Hazard. Mater. 2008;158:23–34. doi: 10.1016/j.jhazmat.2008.01.063. PubMed DOI

Galjak J., Đokić J., Dervišević I., Milentijević G., Mojsić M., Živković B. Assessment of Pollution and Distribution of Heavy Metals in the Soil Near the Flotation Gornje Polje. Pol. J. Environ. Stud. 2022;31:1–10. doi: 10.15244/pjoes/147828. DOI

Zhai Q., Liu R., Wang C., Wen X., Li X., Sun W. A Novel Scheme for the Utilization of Cu Slag Flotation Tailings in Preparing Internal Electrolysis Materials to Degrade Printing and Dyeing Wastewater. J. Hazard. Mater. 2022;424:127537. doi: 10.1016/j.jhazmat.2021.127537. PubMed DOI

Kinnunen P., Karhu M., Yli-Rantala E., Kivikytö-Reponen P., Mäkinen J. A Review of Circular Economy Strategies for Mine Tailings. Clean. Eng. Technol. 2022;8:100499. doi: 10.1016/j.clet.2022.100499. DOI

Zhao K., Zhu X., Ma H., Ji J., Jin X., Sun J. Design and Experiment of the Environment Control System for the Industrialized Production of Agaricus Bisporus. Int. J. Agric. Biol. Eng. 2021;14:97–107. doi: 10.25165/j.ijabe.20211401.5635. DOI

Shahnaz M., Sharma S., Dev D., Prasad D.N. Cultivation Technology and Antibacterial Activity of Agaricus bisporus (U-03) Int. J. Pharm. Chem. Anal. 2020;7:135–144. doi: 10.18231/j.ijpca.2020.021. DOI

Kryczyk A., Piotrowska J., Sito M., Sulkowska-Ziaja K., Dobosz K., Opoka W., Muszynska B. Remediation Capacity of Cd and Pb Ions by Mycelia of Imleria badia, Laetiporus sulphureus, and Agaricus bisporus in Vitro Cultures. J. Environ. Sci. Health Part B. 2017;52:617–622. doi: 10.1080/03601234.2017.1330068. PubMed DOI

Kumar P., Kumar V., Goala M., Singh J., Kumar P. Integrated Use of Treated Dairy Wastewater and Agro-Residue for Agaricus bisporus Mushroom Cultivation: Experimental and Kinetics Studies. Biocatal. Agric. Biotechnol. 2021;32:101940. doi: 10.1016/j.bcab.2021.101940. DOI

Ugya A.Y., Imam T.S. Efficiency of the decomposition process of agaricus bisporus in the mycoremediation of refinery wastewater: Romi stream case study. World J. Pharm. Res. 2017;6:200–211. doi: 10.20959/wjpr20172-7549. DOI

The R Foundation for Statistical Computing Platform, 2019. R Core Team; Vienna, Austria: 2019. version 3.6.1, The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit)

Morrison D.F. Multivariate Statistical Methods. McGraw-Hill Book Company; New York, NY, USA: 1990. p. 495.

Rzymski P., Mleczek M., Niedzielski P., Siwulski M., Gąsecka M. Cultivation of Agaricus bisporus Enriched with Selenium, Zinc and Copper. J. Sci. Food Agric. 2017;97:923–928. doi: 10.1002/jsfa.7816. PubMed DOI

Rzymski P., Mleczek M., Siwulski M., Gąsecka M., Niedzielski P. The Risk of High Mercury Accumulation in Edible Mushrooms Cultivated on Contaminated Substrates. J. Food Compos. Anal. 2016;51:55–60. doi: 10.1016/j.jfca.2016.06.009. DOI

Zhou L., Guo S., Shu M., Liu X., Liu X., Guo X. Accumulation Characteristics and Resistance to Heavy Metal Contamination of Agaricus bisporus Varieties in Shanxi Province, China. Agric. Biotechnol. 2018;7:220–224.

Nagy B., Mânzatu C., Măicăneanu A., Indolean C., Barbu-Tudoran L., Majdik C. Linear and Nonlinear Regression Analysis for Heavy Metals Removal Using Agaricus bisporus Macrofungus. Arab. J. Chem. 2017;10:S3569–S3579. doi: 10.1016/j.arabjc.2014.03.004. DOI

Ali A., Guo D., Mahar A., Wang P., Shen F., Li R., Zhang Z. Mycoremediation of Potentially Toxic Trace Elements—A Biological Tool for Soil Cleanup: A Review. Pedosphere. 2017;27:205–222. doi: 10.1016/S1002-0160(17)60311-4. DOI

Koutrotsios G., Danezis G., Georgiou C., Zervakis G.I. Elemental Content in Pleurotus ostreatus and Cyclocybe cylindracea Mushrooms: Correlations with Concentrations in Cultivation Substrates and Effects on the Production Process. Molecules. 2020;25:2179. doi: 10.3390/molecules25092179. PubMed DOI PMC

Nagy B., Mǎicǎneanu A., Indolean C., Mânzatu C., Silaghi-Dumitrescu L., Majdik C. Comparative Study of Cd(II) Biosorption on Cultivated Agaricus bisporus and Wild Lactarius piperatus Based Biocomposites. Linear and Nonlinear Equilibrium Modelling and Kinetics. J. Taiwan Inst. Chem. Eng. 2014;45:921–929. doi: 10.1016/j.jtice.2013.08.013. DOI

Liang X., Gadd G.M. Metal and Metalloid Biorecovery Using Fungi. Microb. Biotechnol. 2017;10:1199–1205. doi: 10.1111/1751-7915.12767. PubMed DOI PMC

Chatterjee S., Sarma M.K., Deb U., Steinhauser G., Walther C., Gupta D.K. Mushrooms: From Nutrition to Mycoremediation. Environ. Sci. Pollut. Res. 2017;24:19480–19493. doi: 10.1007/s11356-017-9826-3. PubMed DOI

Peintner U., Schwarz S., Mešić A., Moreau P.A., Moreno G., Saviuc P. Mycophilic or Mycophobic? Legislation and Guidelines on Wild Mushroom Commerce Reveal Different Consumption Behaviour in European Countries. PLoS ONE. 2013;8:e63926. doi: 10.1371/journal.pone.0063926. PubMed DOI PMC

European Union . Commission Regulation (EC) No 629/2008 of 2 July 2008 Amending Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. European Union; Brussels, Belgium: 2008.

EFSA (European Food Safety Authority) Dietary Reference Values for Nutrients. EFSA Supporting Publication; Parma, Italy: 2017. Panel on Dietetic Products Nutrition & Allergies. Summary Report, Technical Report. DOI

EFSA Panel on Contaminants in the Food Chain (CONTAM) Scientific Opinion on Arsenic in Food. EFSA J. 2009;7:1351. doi: 10.2903/j.efsa.2009.1351. DOI

Pająk M., Gąsiorek M., Jasik M., Halecki W., Otremba K., Pietrzykowski M. Risk Assessment of Potential Food Chain Threats from Edible Wild Mushrooms Collected in Forest Ecosystems with Heavy Metal Pollution in Upper Silesia, Poland. Forests. 2020;11:1240. doi: 10.3390/f11121240. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...