Renoprotective Effect of Agalsidase Alfa: A Long-Term Follow-Up of Patients with Fabry Disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
N/A
Takeda Pharmaceuticals International AG
PubMed
36013057
PubMed Central
PMC9410255
DOI
10.3390/jcm11164810
PII: jcm11164810
Knihovny.cz E-zdroje
- Klíčová slova
- Fabry disease, enzyme replacement therapy, estimated glomerular filtration rate, proteinuria,
- Publikační typ
- časopisecké články MeSH
Fabry disease is a rare lysosomal storage disorder caused by mutations in the GLA gene, which, without treatment, can cause significant renal dysfunction. We evaluated the effects of enzyme replacement therapy with agalsidase alfa on renal decline in patients with Fabry disease using data from the Fabry Outcome Survey (FOS) registry. Male patients with Fabry disease aged >16 years at agalsidase alfa start were stratified by low (≤0.5 g/24 h) or high (>0.5 g/24 h) baseline proteinuria and by ‘classic’ or ‘non-classic’ phenotype. Overall, 193 male patients with low (n = 135) or high (n = 58) baseline proteinuria were evaluated. Compared with patients with low baseline proteinuria, those with high baseline proteinuria had a lower mean ± standard deviation baseline eGFR (89.1 ± 26.2 vs. 106.6 ± 21.8 mL/min/1.73 m2) and faster mean ± standard error eGFR decline (−3.62 ± 0.42 vs. −1.61 ± 0.28 mL/min/1.73 m2 per year; p < 0.0001). Patients with classic Fabry disease had similar rates of eGFR decline irrespective of baseline proteinuria; only one patient with non-classic Fabry disease had high baseline proteinuria, preventing meaningful comparisons between groups. In this analysis, baseline proteinuria significantly impacted the rate of eGFR decline in the overall population, suggesting that early treatment with good proteinuria control may be associated with renoprotective effects.
Department of Internal Medicine Slovenj Gradec General Hospital 2380 Slovenj Gradec Slovenia
Department of Medicine Dalhousie University Halifax NS B3H 4R2 Canada
Department of Medicine University of Melbourne Parkville VIC 3010 Australia
Department of Nephrology Royal Melbourne Hospital Parkville VIC 3050 Australia
Institut d'Investigació Biomèdica de Bellvitge L'Hospitalet de Llobregat 08908 Barcelona Spain
Nephrology and Dialysis Unit Belcolle Hospital 01100 Viterbo Italy
Takeda Pharmaceuticals International AG 8152 Zurich Switzerland
Zobrazit více v PubMed
Mehta A., Clarke J.T.R., Giugliani R., Elliott P., Linhart A., Beck M., Sunder-Plassmann G. Natural course of Fabry disease: Changing pattern of causes of death in FOS–Fabry Outcome Survey. J. Med. Genet. 2009;46:548–552. doi: 10.1136/jmg.2008.065904. PubMed DOI
Mehta A., Ricci R., Widmer U., Dehout F., Garcia de Lorenzo A., Kampmann C., Linhart A., Sunder-Plassmann G., Ries M., Beck M. Fabry disease defined: Baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur. J. Clin. Investig. 2004;34:236–242. doi: 10.1111/j.1365-2362.2004.01309.x. PubMed DOI
Arends M., Wanner C., Hughes D., Mehta A., Oder D., Watkinson O.T., Elliott P.M., Linthorst G.E., Wijburg F.A., Biegstraaten M., et al. Characterization of classical and nonclassical Fabry disease: A multicenter study. J. Am. Soc. Nephrol. 2017;28:1631–1641. doi: 10.1681/ASN.2016090964. PubMed DOI PMC
Parini R., Pintos-Morell G., Hennermann J.B., Hsu T.R., Karabul N., Kalampoki V., Gurevich A., Ramaswami U., FOS Study Group Analysis of renal and cardiac outcomes in male participants in the Fabry Outcome Survey starting agalsidase alfa enzyme replacement therapy before and after 18 years of age. Drug Des. Dev. Ther. 2020;14:2149–2158. doi: 10.2147/DDDT.S249433. PubMed DOI PMC
Ramaswami U., Beck M., Hughes D., Kampmann C., Botha J., Pintos-Morell G., West M.L., Niu D.M., Nicholls K., Giugliani R., et al. Cardio-renal outcomes with long-term agalsidase alfa enzyme replacement therapy: A 10-year Fabry Outcome Survey (FOS) analysis. Drug Des. Dev. Ther. 2019;13:3705–3715. doi: 10.2147/DDDT.S207856. PubMed DOI PMC
Sasa H., Nagao M., Kino K. Safety and effectiveness of enzyme replacement therapy with agalsidase alfa in patients with Fabry disease: Post-marketing surveillance in Japan. Mol. Genet. Metab. 2019;126:448–459. doi: 10.1016/j.ymgme.2019.02.005. PubMed DOI
Cabrera G., Politei J., Antongiovani N., Amartino H., GADYTEF (Grupo Argentino de Diagnostico y Tratamiento de la Enfermedad de Fabry) Argentina Effectiveness of enzyme replacement therapy in Fabry disease: Long term experience in Argentina. Mol. Genet. Metab. Rep. 2017;11:65–68. doi: 10.1016/j.ymgmr.2017.02.005. PubMed DOI PMC
Feriozzi S., Linhart A., Ramaswami U., Kalampoki V., Gurevich A., Hughes D., Fabry Outcome Survey Study Group Effects of baseline left ventricular hypertrophy and decreased renal function on cardiovascular and renal outcomes in patients with Fabry disease treated with agalsidase alfa: A Fabry Outcome Survey study. Clin. Ther. 2020;42:2321–2330.e0. doi: 10.1016/j.clinthera.2020.10.007. PubMed DOI
Amicus Galafold Prescribing Information. GALAFOLD® (Migalastat) Capsules, for Oral Use. [(accessed on 23 March 2022)]. Available online: https://www.amicusrx.com/pi/galafold.pdf.
Branton M.H., Schiffmann R., Sabnis S.G., Murray G.J., Quirk J.M., Altarescu G., Goldfarb L., Brady R.O., Balow J.E., Austin Iii H.A., et al. Natural history of Fabry renal disease: Influence of alpha-galactosidase A activity and genetic mutations on clinical course. Medicine. 2002;81:122–138. doi: 10.1097/00005792-200203000-00003. PubMed DOI
Tøndel C., Bostad L., Laegreid L.M., Houge G., Svarstad E. Prominence of glomerular and vascular changes in renal biopsies in children and adolescents with Fabry disease and microalbuminuria. Clin. Ther. 2008;30((Suppl. B)):S42. doi: 10.1016/S0149-2918(08)80036-7. PubMed DOI
Talbot A.S., Lewis N.T., Nicholls K.M. Cardiovascular outcomes in Fabry disease are linked to severity of chronic kidney disease. Heart. 2015;101:287–293. doi: 10.1136/heartjnl-2014-306278. PubMed DOI
Germain D.P., Charrow J., Desnick R.J., Guffon N., Kempf J., Lachmann R.H., Lemay R., Linthorst G.E., Packman S., Scott C.R., et al. Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J. Med. Genet. 2015;52:353–358. doi: 10.1136/jmedgenet-2014-102797. PubMed DOI PMC
Schiffmann R., Warnock D.G., Banikazemi M., Bultas J., Linthorst G.E., Packman S., Sorensen S.A., Wilcox W.R., Desnick R.J. Fabry disease: Progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol. Dial. Transplant. 2009;24:2102–2111. doi: 10.1093/ndt/gfp031. PubMed DOI PMC
Stevens L.A., Claybon M.A., Schmid C.H., Chen J., Horio M., Imai E., Nelson R.G., Van Deventer M., Wang H.Y., Zuo L., et al. Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int. 2011;79:555–562. doi: 10.1038/ki.2010.462. PubMed DOI PMC
Oder D., Liu D., Hu K., Uceyler N., Salinger T., Muntze J., Lorenz K., Kandolf R., Grone H.J., Sommer C., et al. α-Galactosidase A genotype N215S induces a specific cardiac variant of Fabry disease. Circ. Cardiovasc. Genet. 2017;10:e001691. doi: 10.1161/CIRCGENETICS.116.001691. PubMed DOI
Koulousios K., Stylianou K., Pateinakis P., Zamanakou M., Loules G., Manou E., Kyriklidou P., Katsinas C., Ouzouni A., Kyriazis J., et al. Fabry disease due to D313Y and novel GLA mutations. BMJ Open. 2017;7:e017098. doi: 10.1136/bmjopen-2017-017098. PubMed DOI PMC
Lukas J., Giese A.K., Markoff A., Grittner U., Kolodny E., Mascher H., Lackner K.J., Meyer W., Wree P., Saviouk V., et al. Functional characterisation of alpha-galactosidase a mutations as a basis for a new classification system in fabry disease. PLoS Genet. 2013;9:e1003632. doi: 10.1371/journal.pgen.1003632. PubMed DOI PMC
Eng C.M., Ashley G.A., Burgert T.S., Enriquez A.L., D’Souza M., Desnick R.J. Fabry disease: Thirty-five mutations in the alpha-galactosidase A gene in patients with classic and variant phenotypes. Mol. Med. 1997;3:174–182. doi: 10.1007/BF03401671. PubMed DOI PMC
Shabbeer J., Yasuda M., Benson S.D., Desnick R.J. Fabry disease: Identification of 50 novel alpha-galactosidase A mutations causing the classic phenotype and three-dimensional structural analysis of 29 missense mutations. Hum. Genom. 2006;2:297–309. doi: 10.1186/1479-7364-2-5-297. PubMed DOI PMC
Reková P., Dostálová G., Kemlink D., Paulasová Schwabová J., Dubská Z., Vaneckova M., Mašek M., Kodet O., Poupětová H., Mazurová S., et al. Detailed phenotype of GLA variants identified by the nationwide neurological screening of sroke ptients in the Czech Republic. J. Clin. Med. 2021;10:3543. doi: 10.3390/jcm10163543. PubMed DOI PMC
Germain D.P., Oliveira J.P., Bichet D.G., Yoo H.W., Hopkin R.J., Lemay R., Politei J., Wanner C., Wilcox W.R., Warnock D.G. Use of a rare disease registry for establishing phenotypic classification of previously unassigned GLA variants: A consensus classification system by a multispecialty Fabry disease genotype-phenotype workgroup. J. Med. Genet. 2020;57:542–551. doi: 10.1136/jmedgenet-2019-106467. PubMed DOI PMC
Malavera A., Cadilhac D.A., Thijs V., Lim J.Y., Grabsch B., Breen S., Jan S., Anderson C.S. Screening for Fabry disease in young strokes in the Australian Stroke Clinical Registry (AuSCR) Front. Neurol. 2020;11:596420. doi: 10.3389/fneur.2020.596420. PubMed DOI PMC
Thomas D.C., Sharma S., Puri R.D., Verma I.C., Verma J. Lysosomal storage disorders: Novel and frequent pathogenic variants in a large cohort of Indian patients of Pompe, Fabry, Gaucher and Hurler disease. Clin. Biochem. 2021;89:14–37. doi: 10.1016/j.clinbiochem.2020.12.002. PubMed DOI
Nampoothiri S., Yesodharan D., Bhattacherjee A., Ahamed H., Puri R.D., Gupta N., Kabra M., Ranganath P., Bhat M., Phadke S., et al. Fabry disease in India: A multicenter study of the clinical and mutation spectrum in 54 patients. JIMD Rep. 2020;56:82–94. doi: 10.1002/jmd2.12156. PubMed DOI PMC
Sawada T., Kido J., Sugawara K., Matsumoto S., Takada F., Tsuboi K., Ohtake A., Endo F., Nakamura K. Detection of novel Fabry disease-associated pathogenic variants in Japanese patients by newborn and high-risk screening. Mol. Genet. Genom. Med. 2020;8:e1502. doi: 10.1002/mgg3.1502. PubMed DOI PMC
Sezer O., Ceylaner S. Genetic management algorithm in high-risk Fabry disease cases; especially in female indexes with mutations. Endocr. Metab. Immune Disord. Drug Targets. 2021;21:324–337. doi: 10.2174/1871530320666200708135826. PubMed DOI
Martins A.M., Cabrera G., Molt F., Suarez-Obando F., Valdes R.A., Varas C., Yang M., Politei J.M. The clinical profiles of female patients with Fabry disease in Latin America: A Fabry Registry analysis of natural history data from 169 patients based on enzyme replacement therapy status. JIMD Rep. 2019;49:107–117. doi: 10.1002/jmd2.12071. PubMed DOI PMC
Lee T.H., Yang J.T., Lee J.D., Chang K.C., Peng T.I., Chang T.Y., Huang K.L., Liu C.H., Ryu S.J., Burlina A.P. Genomic screening of Fabry disease in young stroke patients: The Taiwan experience and a review of the literature. Eur. J. Neurol. 2019;26:553–555. doi: 10.1111/ene.13775. PubMed DOI PMC
Elstein D.A.G., Beck M., editors. Fabry Disease. 1st ed. Springer; Dordrecht, The Netherlands: 2010.
Ortiz A., Germain D.P., Desnick R.J., Politei J., Mauer M., Burlina A., Eng C., Hopkin R.J., Laney D., Linhart A., et al. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol. Genet. Metab. 2018;123:416–427. doi: 10.1016/j.ymgme.2018.02.014. PubMed DOI
Saito S., Ohno K., Sakuraba H. Fabry-database.org: Database of the clinical phenotypes, genotypes and mutant alpha-galactosidase A structures in Fabry disease. J. Hum. Genet. 2011;56:467–468. doi: 10.1038/jhg.2011.31. PubMed DOI
Desnick R.J., Chen R., Srinivasan R., Doheny D., Bishop D.F. The Fabry disease genotype-phenotype database (dbFGP): An international expert consortium. Mol. Genet. Metab. 2018;120:S41–S42. doi: 10.1016/j.ymgme.2016.11.082. DOI
Arends M., Biegstraaten M., Hughes D.A., Mehta A., Elliott P.M., Oder D., Watkinson O.T., Vaz F.M., van Kuilenburg A.B.P., Wanner C., et al. Retrospective study of long-term outcomes of enzyme replacement therapy in Fabry disease: Analysis of prognostic factors. PLoS ONE. 2017;12:e0182379. PubMed PMC
Madsen C.V., Granqvist H., Petersen J.H., Rasmussen A.K., Lund A.M., Oturai P., Sorensen S.S., Feldt-Rasmussen U. Age-related renal function decline in Fabry disease patients on enzyme replacement therapy: A longitudinal cohort study. Nephrol. Dial. Transplant. 2019;34:1525–1533. doi: 10.1093/ndt/gfy357. PubMed DOI
Lopez-Giacoman S., Madero M. Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J. Nephrol. 2015;4:57–73. doi: 10.5527/wjn.v4.i1.57. PubMed DOI PMC
MacDermot K.D., Holmes A., Miners A.H. Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 60 obligate carrier females. J. Med. Genet. 2001;11:769–775. doi: 10.1136/jmg.38.11.769. PubMed DOI PMC