Performance Prediction of Erosive Wear of Steel for Two-Phase Flow in an Inverse U-Bend

. 2022 Aug 12 ; 15 (16) : . [epub] 20220812

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36013695

Grantová podpora
NU/NRP/SERC/11/13 Deanship of Scientific Research, Najran University. Kingdom of Saudi Arabia, National Research Priorities funding program

Erosion of the elbow due to non-Newtonian viscous slurry flows is often observed in hydrocarbon transportation pipelines. This paper intends to study the erosion behavior of double offset U-bends and 180° U-bends for two-phase (liquid-sand) flow. A numerical simulation was conducted using the Discrete Phase Model (DPM) on carbon steel pipe bends with a 40 mm diameter and an R/D ratio of 1.5. The validity of the erosion model has been established by comparing it with the results quantified in the literature by experiment. While the maximum erosive wear rates of all evaluated cases were found to be quite different, the maximum erosion locations have been identified between 150° and 180° downstream at the outer curvature. It was seen that with the increase in disperse phase diameter, the erosive wear rate and impact area increased. Moreover, with the change of configuration from a 180° U-bend to a double offset U-bend, the influence of turbulence on the transit of the disperse phase decreases as the flow approaches downstream and results in less erosive wear in a double offset U-bend. Furthermore, the simulation results manifest that the erosive wear increases with an increase in flow velocity, and the erosion rate of the double offset U-bend was nearly 8.58 times less than the 180° U-bend for a carrier fluid velocity of 2 m/s and 1.82 times less for 4 m/s carrier fluid velocity. The erosion rate of the double offset U-bend was reduced by 120% compared to the 180° U-bend for 6 m/s in liquid-solid flow.

Zobrazit více v PubMed

Khan R., Ya H., Pao W., bin Abdullah M.Z., Dzubir F.A. Influence of Sand Fines Transport Velocity on Erosion-Corrosion Phenomena of Carbon Steel 90-Degree Elbow. Metals. 2020;10:626. doi: 10.3390/met10050626. DOI

Ma G., Ma H., Sun Z. Simulation of Two-Phase Flow of Shotcrete in a Bent Pipe Based on a CFD–DEM Coupling Model. Appl. Sci. 2022;12:3530. doi: 10.3390/app12073530. DOI

Jia W., Zhang Y., Li C., Luo P., Song X., Wang Y., Hu X. Experimental and numerical simulation of erosion-corrosion of 90° steel elbow in shale gas pipeline. J. Nat. Gas Sci. Eng. 2021;89:103871. doi: 10.1016/j.jngse.2021.103871. DOI

Bilal F.S., Sedrez T.A., Shirazi S.A. Experimental and CFD investigations of 45 and 90 degrees bends and various elbow curvature radii effects on solid particle erosion. Wear. 2021;476:203646. doi: 10.1016/j.wear.2021.203646. DOI

Adedeji O.E., Duarte C.A.R. Prediction of thickness loss in a standard 90° elbow using erosion-coupled dynamic mesh. Wear. 2020;460–461:203400. doi: 10.1016/j.wear.2020.203400. DOI

Khan R. Numerical Investigation of the Influence of Sand Particle Concentration on Long Radius Elbow Erosion for Liquid-Solid Flow. Int. J. Eng. 2019;32:1485–1490. doi: 10.5829/ije.2019.32.10a.18. DOI

Kannojiya V., Deshwal M., Deshwal D. Numerical Analysis of Solid Particle Erosion in Pipe Elbow. Pt 1Mater. Today Proc. 2018;5:5021–5030. doi: 10.1016/j.matpr.2017.12.080. DOI

Florio L.A. Estimation of particle impact based erosion using a coupled direct particle—Compressible gas computational fluid dynamics model. Powder Technol. 2017;305:625–651. doi: 10.1016/j.powtec.2016.09.074. DOI

Duarte C.A.R., de Souza F.J. Innovative pipe wall design to mitigate elbow erosion: A CFD analysis. Wear. 2017;380–381:176–190. doi: 10.1016/j.wear.2017.03.015. DOI

Khan R., Ya H.H., Pao W., Khan A. Erosion–Corrosion of 30°, 60°, and 90° Carbon Steel Elbows in a Multiphase Flow Containing Sand Particles. Materials. 2019;12:3898. doi: 10.3390/ma12233898. PubMed DOI PMC

Elemuren R., Tamsaki A., Evitts R., Oguocha I.N.A., Kennell G., Gerspacher R., Odeshi A. Erosion-corrosion of 90° AISI 1018 steel elbows in potash slurry: Effect of particle concentration on surface roughness. Wear. 2019;430–431:37–49. doi: 10.1016/j.wear.2019.04.014. DOI

Zhao X., Cao X., Xie Z., Cao H., Wu C., Bian J. Numerical study on the particle erosion of elbows mounted in series in the gas-solid flow. J. Nat. Gas Sci. Eng. 2022;99:104423. doi: 10.1016/j.jngse.2022.104423. DOI

Wang Q., Ba X., Huang Q., Wang N., Wen Y., Zhang Z., Sun X., Yang L., Zhang J. Modeling erosion process in elbows of petroleum pipelines using large eddy simulation. J. Pet. Sci. Eng. 2022;211:110216. doi: 10.1016/j.petrol.2022.110216. DOI

Wang K., Li X., Wang Y., He R. Numerical investigation of the erosion behavior in elbows of petroleum pipelines. Powder Technol. 2017;314:490–499. doi: 10.1016/j.powtec.2016.12.083. DOI

Khan R., Ya H.H., Shah I., Niazi U.M., Ahmed B.A., Irfan M., Glowacz A., Pilch Z., Brumercik F., Azeem M., et al. Influence of Elbow Angle on Erosion-Corrosion of 1018 Steel for Gas–Liquid–Solid Three Phase Flow. Materials. 2022;15:3721. doi: 10.3390/ma15103721. PubMed DOI PMC

Duarte C.A.R., de Souza F.J., dos Santos V.F. Numerical investigation of mass loading effects on elbow erosion. Powder Technol. 2015;283:593–606. doi: 10.1016/j.powtec.2015.06.021. DOI

Karimi S., Shirazi S.A., McLaury B.S. Predicting fine particle erosion utilizing computational fluid dynamics. Wear. 2017;376–377:1130–1137. doi: 10.1016/j.wear.2016.11.022. DOI

Cui B., Chen P., Zhao Y. Numerical simulation of particle erosion in the vertical-upward-horizontal elbow under multiphase bubble flow. Powder Technol. 2022;404:117437. doi: 10.1016/j.powtec.2022.117437. DOI

Li B., Zeng M., Wang Q. Numerical Simulation of Erosion Wear for Continuous Elbows in Different Directions. Energies. 2022;15:1901. doi: 10.3390/en15051901. DOI

Zhu H., Qi Y. Numerical investigation of flow erosion of sand-laden oil flow in a U-bend. Process Saf. Environ. Prot. 2019;131:16–27. doi: 10.1016/j.psep.2019.08.033. DOI

Mazumder Q.H. S-bend erosion in particulated multiphase flow with air and sand. J. Comput. Multiph. Flows. 2016;8:157–166. doi: 10.1177/1757482X16668363. DOI

Gnanavelu A., Kapur N., Neville A., Flores J.F. An integrated methodology for predicting material wear rates due to erosion. Wear. 2009;267:1935–1944. doi: 10.1016/j.wear.2009.05.001. DOI

Mansouri A., Arabnejad H., Karimi S., Shirazi S.A., McLaury B.S. Improved CFD modeling and validation of erosion damage due to fine sand particles. Wear. 2015;338–339:339–350. doi: 10.1016/j.wear.2015.07.011. DOI

Chochua G.G., Shirazi S.A. A combined CFD-experimental study of erosion wear life prediction for non-Newtonian viscous slurries. Wear. 2019;426–427:481–490. doi: 10.1016/j.wear.2018.12.003. DOI

Pei J., Lui A., Zhang Q., Xiong T., Jiang P., Wei W. Numerical investigation of the maximum erosion zone in elbows for liquid-particle flow. Powder Technol. 2018;333:47–59. doi: 10.1016/j.powtec.2018.04.001. DOI

Wee S.K., Yap Y.J. CFD study of sand erosion in pipeline. J. Pet. Sci. Eng. 2019;176:269–278. doi: 10.1016/j.petrol.2019.01.001. DOI

Peng W., Cao X. Numerical simulation of solid particle erosion in pipe bends for liquid–solid flow. Powder Technol. 2016;294:266–279. doi: 10.1016/j.powtec.2016.02.030. DOI

Grant G., Tabakoff W. Erosion Prediction in Turbomachinery Resulting from Environmental Solid Particles. J. Aircr. 1975;12:471–478. doi: 10.2514/3.59826. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...