Performance Prediction of Erosive Wear of Steel for Two-Phase Flow in an Inverse U-Bend
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU/NRP/SERC/11/13
Deanship of Scientific Research, Najran University. Kingdom of Saudi Arabia, National Research Priorities funding program
PubMed
36013695
PubMed Central
PMC9414689
DOI
10.3390/ma15165558
PII: ma15165558
Knihovny.cz E-zdroje
- Klíčová slova
- U-bends, discrete phase model, elbow, erosion, sand, wear,
- Publikační typ
- časopisecké články MeSH
Erosion of the elbow due to non-Newtonian viscous slurry flows is often observed in hydrocarbon transportation pipelines. This paper intends to study the erosion behavior of double offset U-bends and 180° U-bends for two-phase (liquid-sand) flow. A numerical simulation was conducted using the Discrete Phase Model (DPM) on carbon steel pipe bends with a 40 mm diameter and an R/D ratio of 1.5. The validity of the erosion model has been established by comparing it with the results quantified in the literature by experiment. While the maximum erosive wear rates of all evaluated cases were found to be quite different, the maximum erosion locations have been identified between 150° and 180° downstream at the outer curvature. It was seen that with the increase in disperse phase diameter, the erosive wear rate and impact area increased. Moreover, with the change of configuration from a 180° U-bend to a double offset U-bend, the influence of turbulence on the transit of the disperse phase decreases as the flow approaches downstream and results in less erosive wear in a double offset U-bend. Furthermore, the simulation results manifest that the erosive wear increases with an increase in flow velocity, and the erosion rate of the double offset U-bend was nearly 8.58 times less than the 180° U-bend for a carrier fluid velocity of 2 m/s and 1.82 times less for 4 m/s carrier fluid velocity. The erosion rate of the double offset U-bend was reduced by 120% compared to the 180° U-bend for 6 m/s in liquid-solid flow.
Department of Mechanical Engineering Technology National Skills University Islamabad 44000 Pakistan
Electrical Engineering Department College of Engineering Najran University Najran 61441 Saudi Arabia
Faculty of Mechanical Engineering Poznan University of Technology 60 965 Poznan Poland
Zobrazit více v PubMed
Khan R., Ya H., Pao W., bin Abdullah M.Z., Dzubir F.A. Influence of Sand Fines Transport Velocity on Erosion-Corrosion Phenomena of Carbon Steel 90-Degree Elbow. Metals. 2020;10:626. doi: 10.3390/met10050626. DOI
Ma G., Ma H., Sun Z. Simulation of Two-Phase Flow of Shotcrete in a Bent Pipe Based on a CFD–DEM Coupling Model. Appl. Sci. 2022;12:3530. doi: 10.3390/app12073530. DOI
Jia W., Zhang Y., Li C., Luo P., Song X., Wang Y., Hu X. Experimental and numerical simulation of erosion-corrosion of 90° steel elbow in shale gas pipeline. J. Nat. Gas Sci. Eng. 2021;89:103871. doi: 10.1016/j.jngse.2021.103871. DOI
Bilal F.S., Sedrez T.A., Shirazi S.A. Experimental and CFD investigations of 45 and 90 degrees bends and various elbow curvature radii effects on solid particle erosion. Wear. 2021;476:203646. doi: 10.1016/j.wear.2021.203646. DOI
Adedeji O.E., Duarte C.A.R. Prediction of thickness loss in a standard 90° elbow using erosion-coupled dynamic mesh. Wear. 2020;460–461:203400. doi: 10.1016/j.wear.2020.203400. DOI
Khan R. Numerical Investigation of the Influence of Sand Particle Concentration on Long Radius Elbow Erosion for Liquid-Solid Flow. Int. J. Eng. 2019;32:1485–1490. doi: 10.5829/ije.2019.32.10a.18. DOI
Kannojiya V., Deshwal M., Deshwal D. Numerical Analysis of Solid Particle Erosion in Pipe Elbow. Pt 1Mater. Today Proc. 2018;5:5021–5030. doi: 10.1016/j.matpr.2017.12.080. DOI
Florio L.A. Estimation of particle impact based erosion using a coupled direct particle—Compressible gas computational fluid dynamics model. Powder Technol. 2017;305:625–651. doi: 10.1016/j.powtec.2016.09.074. DOI
Duarte C.A.R., de Souza F.J. Innovative pipe wall design to mitigate elbow erosion: A CFD analysis. Wear. 2017;380–381:176–190. doi: 10.1016/j.wear.2017.03.015. DOI
Khan R., Ya H.H., Pao W., Khan A. Erosion–Corrosion of 30°, 60°, and 90° Carbon Steel Elbows in a Multiphase Flow Containing Sand Particles. Materials. 2019;12:3898. doi: 10.3390/ma12233898. PubMed DOI PMC
Elemuren R., Tamsaki A., Evitts R., Oguocha I.N.A., Kennell G., Gerspacher R., Odeshi A. Erosion-corrosion of 90° AISI 1018 steel elbows in potash slurry: Effect of particle concentration on surface roughness. Wear. 2019;430–431:37–49. doi: 10.1016/j.wear.2019.04.014. DOI
Zhao X., Cao X., Xie Z., Cao H., Wu C., Bian J. Numerical study on the particle erosion of elbows mounted in series in the gas-solid flow. J. Nat. Gas Sci. Eng. 2022;99:104423. doi: 10.1016/j.jngse.2022.104423. DOI
Wang Q., Ba X., Huang Q., Wang N., Wen Y., Zhang Z., Sun X., Yang L., Zhang J. Modeling erosion process in elbows of petroleum pipelines using large eddy simulation. J. Pet. Sci. Eng. 2022;211:110216. doi: 10.1016/j.petrol.2022.110216. DOI
Wang K., Li X., Wang Y., He R. Numerical investigation of the erosion behavior in elbows of petroleum pipelines. Powder Technol. 2017;314:490–499. doi: 10.1016/j.powtec.2016.12.083. DOI
Khan R., Ya H.H., Shah I., Niazi U.M., Ahmed B.A., Irfan M., Glowacz A., Pilch Z., Brumercik F., Azeem M., et al. Influence of Elbow Angle on Erosion-Corrosion of 1018 Steel for Gas–Liquid–Solid Three Phase Flow. Materials. 2022;15:3721. doi: 10.3390/ma15103721. PubMed DOI PMC
Duarte C.A.R., de Souza F.J., dos Santos V.F. Numerical investigation of mass loading effects on elbow erosion. Powder Technol. 2015;283:593–606. doi: 10.1016/j.powtec.2015.06.021. DOI
Karimi S., Shirazi S.A., McLaury B.S. Predicting fine particle erosion utilizing computational fluid dynamics. Wear. 2017;376–377:1130–1137. doi: 10.1016/j.wear.2016.11.022. DOI
Cui B., Chen P., Zhao Y. Numerical simulation of particle erosion in the vertical-upward-horizontal elbow under multiphase bubble flow. Powder Technol. 2022;404:117437. doi: 10.1016/j.powtec.2022.117437. DOI
Li B., Zeng M., Wang Q. Numerical Simulation of Erosion Wear for Continuous Elbows in Different Directions. Energies. 2022;15:1901. doi: 10.3390/en15051901. DOI
Zhu H., Qi Y. Numerical investigation of flow erosion of sand-laden oil flow in a U-bend. Process Saf. Environ. Prot. 2019;131:16–27. doi: 10.1016/j.psep.2019.08.033. DOI
Mazumder Q.H. S-bend erosion in particulated multiphase flow with air and sand. J. Comput. Multiph. Flows. 2016;8:157–166. doi: 10.1177/1757482X16668363. DOI
Gnanavelu A., Kapur N., Neville A., Flores J.F. An integrated methodology for predicting material wear rates due to erosion. Wear. 2009;267:1935–1944. doi: 10.1016/j.wear.2009.05.001. DOI
Mansouri A., Arabnejad H., Karimi S., Shirazi S.A., McLaury B.S. Improved CFD modeling and validation of erosion damage due to fine sand particles. Wear. 2015;338–339:339–350. doi: 10.1016/j.wear.2015.07.011. DOI
Chochua G.G., Shirazi S.A. A combined CFD-experimental study of erosion wear life prediction for non-Newtonian viscous slurries. Wear. 2019;426–427:481–490. doi: 10.1016/j.wear.2018.12.003. DOI
Pei J., Lui A., Zhang Q., Xiong T., Jiang P., Wei W. Numerical investigation of the maximum erosion zone in elbows for liquid-particle flow. Powder Technol. 2018;333:47–59. doi: 10.1016/j.powtec.2018.04.001. DOI
Wee S.K., Yap Y.J. CFD study of sand erosion in pipeline. J. Pet. Sci. Eng. 2019;176:269–278. doi: 10.1016/j.petrol.2019.01.001. DOI
Peng W., Cao X. Numerical simulation of solid particle erosion in pipe bends for liquid–solid flow. Powder Technol. 2016;294:266–279. doi: 10.1016/j.powtec.2016.02.030. DOI
Grant G., Tabakoff W. Erosion Prediction in Turbomachinery Resulting from Environmental Solid Particles. J. Aircr. 1975;12:471–478. doi: 10.2514/3.59826. DOI