Zinc Oxide Nanoparticles (ZnO NPs) and N-Methylol Dimethyl Phosphonopropion Amide (MDPA) System for Flame Retardant Cotton Fabrics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36015672
PubMed Central
PMC9416732
DOI
10.3390/polym14163414
PII: polym14163414
Knihovny.cz E-zdroje
- Klíčová slova
- ZnO, antibacterial, flame retardants, metal oxides, nanoparticles,
- Publikační typ
- časopisecké články MeSH
The aim of the present research work was to develop halogen and formaldehyde-free, durable flame retardant fabric along with multifunctional properties and to find the optimal conditions and parameters. In this research, zinc oxide nanoparticles (ZnO NPs) were grown onto 100% cotton fabric using the sonochemical method. Zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and sodium hydroxide (NaOH) were used as precursors. After ZnO NPs growth, N-Methylol dimethylphosphonopropionamide (MDPA) flame retardant was applied in the presence of 1, 2, 3, 4-butanetetracarboxylic acid (BTCA) as cross-linkers using the conventional pad-dry-cure method. Induced coupled plasma atomic emission spectroscopy (ICP-AES) was used to determine the deposited amount of Zn and phosphorous (P) contents. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) were employed to determine the surface morphology and characterization of the developed samples. Furthermore, the thermal degradation of the untreated and treated samples was investigated by thermogravimetric analysis (TGA). Furthermore, the vertical flame retardant test, limiting oxygen index (LOI), ultraviolet protection factor (UPF), and antibacterial activity of samples were examined. The developed samples showed excellent results for flame retardancy (i.e., 39 mm char length, 0 s after flame time, 0 s after glow time), 32.2 LOI, 143.76 UPF, and 100% antibacterial activity.
Zobrazit více v PubMed
Mahbubul B.M., Khan M.A. An Overview on Surface Modification of Cotton Fiber for Apparel Use. J. Polym. Environ. 2013;21:181–190. doi: 10.1007/s10924-012-0476-8. DOI
Ravandi S.A.H., Valizadeh M. Improving Comfort in Clothing. Elsevier; Amsterdam, The Netherlands: 2011. Properties of fibers and fabrics that contribute to human comfort; pp. 61–78.
Yip J., Chan W.-Y. Latest Material and Technological Developments for Activewear. Elsevier; Amsterdam, The Netherlands: 2020. Textile fibers and fabrics; pp. 47–72.
Cheema H.A., El-Shafei A., Hauser P.J. Conferring Flame Retardancy on Cotton Using Novel Halogen-Free Flame Retardant Bifunctional Monomers: Synthesis, Characterizations and Applications. Carbohydr. Polym. 2013;92:885–893. doi: 10.1016/j.carbpol.2012.09.081. PubMed DOI
Mayer G.T., Plohl D., Derksen L., Lauer D., Neldner P., Ali W., Fuchs S., Gutmann J.S., Opwis K. A Green Water-soluble Cyclophosphazene as a Flame Retardant Finish for Textiles. Molecules. 2019;24:3100. doi: 10.3390/molecules24173100. PubMed DOI PMC
Rahman L.M.L., Islam M.T., Repon M.R., Hossain M.M., Sarker P. Comparative Dyeing Behavior and UV Protective Characteristics of Cotton Fabric Treated with Polyphenols Enriched Banana and Watermelon Biowaste. Sustain. Chem. Pharm. 2021;21:100417. doi: 10.1016/j.scp.2021.100417. DOI
Fan Z., Di L., Zhang X., Wang H. A Surface Dielectric Barrier Discharge Plasma for Preparing Cotton-Fabric-Supported Silver Nanoparticles. Nanomaterials. 2019;9:961. doi: 10.3390/nano9070961. PubMed DOI PMC
Zhang K.K., Zong L., Tan Y., Ji Q., Yun W., Shi R., Xia Y. Improve the Flame Retardancy of Cellulose Fibers by Grafting Zinc Ion. Carbohydr. Polym. 2016;136:121–127. doi: 10.1016/j.carbpol.2015.09.026. PubMed DOI
Saleemi S., Naveed T., Riaz T., Memon H., Awan J.A., Siyal M.I., Xu F., Bae J. Surface Functionalization of Cotton and Pc Fabrics Using SiO2 and ZnO Nanoparticles for Durable Flame Retardant Properties. Coatings. 2020;10:124. doi: 10.3390/coatings10020124. DOI
Yang S., Wang J., Huo S., Wang M., Cheng L. Synthesis of a Phosphorus/Nitrogen-Containing Additive with Multifunctional Groups and Its Flame-Retardant Effect in Epoxy Resin. Ind. Eng. Chem. Res. 2015;54:7777–7786. doi: 10.1021/acs.iecr.5b02026. DOI
Yang S., Hu Y., Zhang Q. Synthesis of a Phosphorus–Nitrogen-Containing Flame Retardant and Its Application in Epoxy Resin. High Perform. Polym. 2019;31:186–196. doi: 10.1177/0954008318756496. DOI
Rao T.N., Naidu T.M., Kim M.S., Parvatamma B., Prashanthi Y., Koo B.H. Influence of Zinc Oxide Nanoparticles and Char Forming Agent Polymer on Flame Retardancy of Intumescent Flame Retardant Coatings. Nanomaterials. 2020;10:42. doi: 10.3390/nano10010042. PubMed DOI PMC
Nguyen T.M., Chang S., Condon B., Slopek R., Graves E., Yoshioka-Tarver M. Structural Effect of Phosphoramidate Derivatives on the Thermal and Flame Retardant Behaviors of Treated Cotton Cellulose. Ind. Eng. Chem. Res. 2013;52:4715–4724. doi: 10.1021/ie400180f. DOI
Huong N.T., Khanh V.T.H., Linh N.P.D. Optimizing Content of Pyrovatex CP New and Knittex FFRC in Flame Retardant Treatment for Cotton Fabric. Ind. Textila. 2021;72:315–323. doi: 10.35530/IT.072.03.1648. DOI
Chang S.C., Condon B., Smith J., Nam S. Flame Resistant Cotton Fabric Containing Casein and Inorganic Materials Using an Environmentally-Friendly Microwave Assisted Technique. Fibers Polym. 2020;21:2246–2252. doi: 10.1007/s12221-020-9965-x. DOI
Van D.V.I., De B.J. Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis. Chemosphere. 2012;88:1119–1153. doi: 10.1016/j.chemosphere.2012.03.067. PubMed DOI
Yaqoob A.A., Parveen T., Umar K., Ibrahim M.N.M. Role of Nanomaterials in the Treatment of Waste Water. Water. 2020;12:495. doi: 10.3390/w12020495. DOI
Yaqoob A.A., Ahmad H., Parveen T., Ahmad A., Oves M., Ismail I.M.I., Qari H.A., Umar K., Ibrahim M.N.M. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front. Chem. 2020;8:1–23. doi: 10.3389/fchem.2020.00341. PubMed DOI PMC
Galaly A.R., Dawood N. Non-Thermal Plasma Treatment Coupled with a Photocatalyst for Antimicrobial Performance of Ihram Cotton Fabric. Nanomaterials. 2022;12:1004. doi: 10.3390/nano12061004. PubMed DOI PMC
Javed A., Wiener J., Tamulevičienė A., Tamulevičius T., Lazauskas A., Saskova J., Račkauskas S. One Step In-Situ Synthesis of Zinc Oxide Nanoparticles for Multifunctional Cotton Fabrics. Materials. 2021;14:3956. doi: 10.3390/ma14143956. PubMed DOI PMC
Abramova A.V., Abramov V.O., Fedulov I.S., Baranchikov A.E., Kozlov D.A., Veselova V.O., Kameneva S.V., Ivanov V.K., Cravotto G. Strong Antibacterial Properties of Cotton Fabrics Coated with Ceria Nanoparticles under High-Power Ultrasound. Nanomaterials. 2021;11:2704. doi: 10.3390/nano11102704. PubMed DOI PMC
Fernandes M., Padrão J., Ribeiro A.I., Fernandes R.D.V., Melro L., Nicolau T., Mehravani B., Alves C., Rodrigues R., Zille A. Polysaccharides and Metal Nanoparticles for Functional Textiles: A Review. Nanomaterials. 2022;12:1006. doi: 10.3390/nano12061006. PubMed DOI PMC
Tănase M.A., Soare A.C., Oancea P., Răducan A., Mihăescu C.I., Alexandrescu E., Petcu C., Diţu L.M., Ferbinţeanu M., Cojocaru B., et al. Facile in Situ Synthesis of Zno Flower-like Hierarchical Nanostructures by the Microwave Irradiation Method for Multifunctional Textile Coatings. Nanomaterials. 2021;11:2574. doi: 10.3390/nano11102574. PubMed DOI PMC
Nguyen H.T.P., Nguyen T.M.T., Hoang C.N., Le T.K., Lund T., Nguyen H.K.H., Huynh T.K.X. Characterization and Photocatalytic Activity of New Photocatalysts Based on Ag, F-Modified ZnO Nanoparticles Prepared by Thermal Shock Method. Arab. J. Chem. 2020;13:1837–1847. doi: 10.1016/j.arabjc.2018.01.018. DOI
Espitia P.J.P., Soares N.d.F.F., Coimbra J.S.D.R., de Andrade N.J., Cruz R.S., Medeiros E.A.A. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol. 2012;5:1447–1464. doi: 10.1007/s11947-012-0797-6. DOI
Moezzi A., McDonagh A.M., Cortie M.B. Zinc Oxide Particles: Synthesis, Properties and Applications. Chem. Eng. J. 2012;185–186:1–22. doi: 10.1016/j.cej.2012.01.076. DOI
Kale R.D., Soni M., Potdar T. A Flame Retardant, Antimicrobial and UV Protective Polyester Fabric by Solvent Crazing Route. J. Polym. Res. 2019;26:1–2. doi: 10.1007/s10965-019-1849-7. DOI
El-Hady M.M.A., Farouk A., Sharaf S. Flame Retardancy and UV Protection of Cotton Based Fabrics Using Nano ZnO and Polycarboxylic Acids. Carbohydr. Polym. 2013;92:400–406. doi: 10.1016/j.carbpol.2012.08.085. PubMed DOI
Samanta A.K., Bhattacharyya R., Jose S., Basu G., Chowdhury R. Fire Retardant Finish of Jute Fabric with Nano Zinc Oxide. Cellulose. 2017;24:1143–1157. doi: 10.1007/s10570-016-1171-z. DOI
Verbič A., Gorjanc M., Simončič B. Zinc Oxide for Functional Textile Coatings: Recent Advances. Coatings. 2019;9:550. doi: 10.3390/coatings9090550. DOI
Khan M.Z., Militky J., Petru M., Tomkov B., Ali A., Javed A., Azeem M., Křemenáková D. Ultra-Fast Growth of ZnO Nanorods on Cotton Fabrics and Their Self-Cleaning and Physiological Comfort Properties. Coatings. 2021;11:1309. doi: 10.3390/coatings11111309. DOI
Magovac E., Vončina B., Jordanov I., Grunlan J.C., Bischof S. Layer-by-Layer Deposition: A Promising Environmentally Benign Flame-Retardant Treatment for Cotton, Polyester, Polyamide and Blended Textiles. Materials. 2022;15:432. doi: 10.3390/ma15020432. PubMed DOI PMC
Akhavan S.F., Montazer M. In Situ Sonosynthesis of Nano TiO2 on Cotton Fabric. Ultrason. Sonochem. 2014;21:681–691. doi: 10.1016/j.ultsonch.2013.09.018. PubMed DOI
Javed A., Azeem M., Wiener J., Thukkaram M., Saskova J., Mansoor T. Ultrasonically Assisted In Situ Deposition of ZnO Nano Particles on Cotton Fabrics for Multifunctional Textiles. Fibers Polym. 2021;22:77–86. doi: 10.1007/s12221-021-0051-9. DOI
Ran J., He M., Li W., Cheng D., Wang X. Growing ZnO Nanoparticles on Polydopamine-Templated Cotton Fabrics for Durable Antimicrobial Activity and UV Protection. Polymers. 2018;10:495. doi: 10.3390/polym10050495. PubMed DOI PMC
Wojnarowicz J., Chudoba T., Lojkowski W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, process Parameters and Morphologies. Nanomaterials. 2020;10:1086. doi: 10.3390/nano10061086. PubMed DOI PMC
Mohajerani A., Burnett L., Smith J.V., Kurmus H., Milas J., Arulrajah A., Horpibulsuk S., Abdul Kadir A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials. 2019;12:3052. doi: 10.3390/ma12193052. PubMed DOI PMC
Jiao L., Ma J., Dai H. Preparation and Characterization of Self-Reinforced Antibacterial and Oil-Resistant Paper Using a NaOH/Urea/ZnO Solution. PLoS ONE. 2015;10:1–16. doi: 10.1371/journal.pone.0140603. PubMed DOI PMC
Sun X.Z., Bremner D.H., Wan N., Wang X. Development of Antibacterial ZnO-Loaded Cotton Fabric Based on in Situ Fabrication. Appl. Phys. A Mater. Sci. Process. 2016;122:1–9. doi: 10.1007/s00339-016-0482-0. DOI
Thi V.H.T., Lee B.-K. Development of Multifunctional Self-Cleaning and UV Blocking Cotton Fabric with Modification of Photoactive ZnO Coating via Microwave Method. J. Photochem. Photobiol. A Chem. 2017;338:13–22.
Shao D., Gao Y., Cao K., Wei Q. Rapid Surface Functionalization of Cotton Fabrics by Modified Hydrothermal Synthesis of ZnO. J. Text. Inst. 2017;108:1391–1397. doi: 10.1080/00405000.2016.1254581. DOI
Li Y., Zou Y., An D., Hou Y., Zhou Q., Zhang L. Investigation of Antibacterial Properties of Nano-ZnO Assembled Cotton Fibers. Fibers Polym. 2013;14:990–995. doi: 10.1007/s12221-013-0990-x. DOI
Sivakumar P.M., Balaji S., Prabhawathi V., Neelakandan R., Manoharan P.T., Doble M. Effective Antibacterial Adhesive Coating on Cotton Fabric Using ZnO Nanorods and Chalcone. Carbohydr. Polym. 2010;79:717–723. doi: 10.1016/j.carbpol.2009.09.027. DOI
Chung C., Lee M., Choe E.K. Characterization of Cotton Fabric Scouring by FT-IR ATR Spectroscopy. Carbohydr. Polym. 2004;58:417–420. doi: 10.1016/j.carbpol.2004.08.005. DOI
Zhao H., Liang Q., Lu Y. Microstructure and Properties of Copper Plating on Citric Acid Modified Cotton Fabric. Fibers Polym. 2015;16:593–598. doi: 10.1007/s12221-015-0593-9. DOI
Xu F., Zhang G., Wang P., Dai F. Durable and High-Efficiency Casein-Derived Phosphorus-Nitrogen-Rich Flame Retardants for Cotton Fabrics. Cellulose. 2022;29:2681–2697. doi: 10.1007/s10570-022-04430-y. DOI
Bazant P., Kuritka I., Munster L., Kalina L. Microwave Solvothermal Decoration of the Cellulose Surface by Nanostructured Hybrid Ag/ZnO Particles: A Joint XPS, XRD and SEM Study. Cellulose. 2015;22:1275–1293. doi: 10.1007/s10570-015-0561-y. DOI
Ceylan Ö., Van L.L., Rahier H., De Clerck K. The Effect of Water Immersion on the Thermal Degradation of Cotton Fibers. Cellulose. 2013;20:1603–1612. doi: 10.1007/s10570-013-9936-0. DOI
Barani H. Surface Activation of Cotton Fiber by Seeding Silver Nanoparticles and in Situ Synthesizing ZnO Nanoparticles. New J. Chem. 2014;38:4365–4370. doi: 10.1039/C4NJ00547C. DOI
Gaan S., Sun G. Effect of Phosphorus and Nitrogen on Flame Retardant Cellulose: A Study of Phosphorus Compounds. J. Anal. Appl. Pyrolysis. 2007;78:371–377. doi: 10.1016/j.jaap.2006.09.010. DOI
Fallah M.H., Fallah S.A., Zanjanchi M.A. Synthesis and Characterization of Nano-Sized Zinc Oxide Coating on Cellulosic Fibers: Photoactivity and Flame-Retardancy Study. Chin. J. Chem. 2011;29:1239–1245. doi: 10.1002/cjoc.201190230. DOI
Wu W., Zhen X., Yang C.Q. Correlation between Limiting Oxygen Index and Phosphorus Content of the Cotton Fabric Treated with a Hydroxy-Functional Organophosphorus Flame Retarding Finish and Melamine-Formaldehyde. J. Fire Sci. 2004;22:11–23. doi: 10.1177/0734904104035253. DOI
Qian X., Song L., Hu Y., Yuen R.K.K., Chen L., Guo Y., Hong N., Jiang S. Combustion and Thermal Degradation Mechanism of a Novel Intumescent Flame Retardant for Epoxy Acrylate Containing Phosphorus and Nitrogen. Ind. Eng. Chem. Res. 2011;50:1881–1892. doi: 10.1021/ie102196k. DOI
Siriviriyanun A., O’Rear E.A., Yanumet N. Self-Extinguishing Cotton Fabric with Minimal Phosphorus Deposition. Cellulose. 2008;15:731–737. doi: 10.1007/s10570-008-9223-7. DOI
Lam Y.L., Kan C.W., Yuen C.W.M. Effect of Zinc Oxide on Flame Retardant Finishing of Plasma Pre-Treated Cotton Fabric. Cellulose. 2011;18:151–165. doi: 10.1007/s10570-010-9466-y. DOI
Thi H.N., Hong K.V.T., Ha T.N., Phan D.N. Application of Plasma Activation in Flame-Retardant Treatment for Cotton Fabric. Polymers. 2020;12:1575. doi: 10.3390/polym12071575. PubMed DOI PMC
Liu Y., Zhou L., Ding F., Li S., Li R., Li Z., Huang D., Ren X. Flame-Retardant Cotton Fabrics Modified with Phosphoramidate Derivative via Electron Beam Irradiation Process. J. Ind. Text. 2019;51:396–408. doi: 10.1177/1528083719881816. DOI
Nguyen H.K., Sakai W., Nguyen C. Preparation of a Novel Flame Retardant Formulation for Cotton Fabric. Materials. 2020;13:54. doi: 10.3390/ma13010054. PubMed DOI PMC
Makhlouf G., Abdelkhalik A., Ameen H. Synthesis of a Novel Highly Efficient Flame-Retardant Coating for Cotton Fabrics with Low Combustion Toxicity and Antibacterial Properties. Cellulose. 2021;28:8785–8806. doi: 10.1007/s10570-021-04076-2. DOI
Tomak E.D., Cavdar A.D. Limited Oxygen Index Levels of Impregnated Scots Pine Wood. Thermochim. Acta. 2013;573:181–185. doi: 10.1016/j.tca.2013.09.022. DOI
Xie K., Gao A., Zhang Y. Flame Retardant Finishing of Cotton Fabric Based on Synergistic Compounds Containing Boron and Nitrogen. Carbohydr. Polym. 2013;98:706–710. doi: 10.1016/j.carbpol.2013.06.014. PubMed DOI
Wang L., Hu C., Shao L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC
Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015;7:219–242. doi: 10.1007/s40820-015-0040-x. PubMed DOI PMC
Shaikh S., Nazam N., Rizvi S.M.D., Ahmad K., Baig M.H., Lee E.J., Choi I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int. J. Mol. Sci. 2019;20:2468. doi: 10.3390/ijms20102468. PubMed DOI PMC
Anita S., Ramachandran T., Rajendran R., Koushik C.V., Mahalakshmi M. Preparation and Characterization of Zinc Oxide Nanoparticles and a Study of the Anti-Microbial Property of Cotton Fabric Treated with the Particles. J. Text. Apparel Technol. Manag. 2010;6
Souza D.A.R., Gusatti M., Ternus R.Z., Fiori M.A., Riella H.G. In Situ Growth of ZnO Nanostructures on Cotton Fabric by Solochemical Process for Antibacterial Purposes. J. Nanomater. 2018;2018:1–9. doi: 10.1155/2018/9082191. DOI
Matsumura Y., Ananthaswamy H.N. Toxic Effects of Ultraviolet Radiation on the Skin. Toxicol. Appl. Pharmacol. 2004;195:298–308. doi: 10.1016/j.taap.2003.08.019. PubMed DOI
Young A.R. Acute Effects of UVR on Human Eyes and Skin. Prog. Biophys. Mol. Biol. 2006;92:80–85. doi: 10.1016/j.pbiomolbio.2006.02.005. PubMed DOI
Javed A., Azeem M., Saskova J. P024_0663_ UV Protective Fabrics by Application of Ball Milled Neem Tree Leaves; Proceedings of the 19th World Textile Conference-Autex 2019; Ghent, Belgium. 11–15 June 2019; p. 3.
Gies P., Slevin T., Harrison S., Plowman P., Dain S., Moller L., Mawley F., Swift N. Australian/New Zealand Standard, AS/NZS 4399: 2017: Sun Protective Clothing–Evaluation and Classification. Standards Australia; Sydney, Australia: 2017.
Han K., Yu M. Study of the Preparation and Properties of UV-blocking Fabrics of a PET/TiO2 Nanocomposite Prepared by in Situ Polycondensation. J. Appl. Polym. Sci. 2006;100:1588–1593. doi: 10.1002/app.23312. DOI
Mondal S. Nanomaterials for UV Protective Textiles. J. Ind. Text. 2021;16:1528083721988949. doi: 10.1177/1528083721988949. DOI
Alebeid O.K., Zhao T. Review on: Developing UV Protection for Cotton Fabric. J. Text. Inst. 2017;108:2027–2039. doi: 10.1080/00405000.2017.1311201. DOI
Ghamsari M.S., Alamdari S., Han W., Park H.H. Impact of Nanostructured Thin ZnO Film in Ultraviolet Protection. Int. J. Nanomed. 2017;12:207–216. doi: 10.2147/IJN.S118637. PubMed DOI PMC