Zinc Oxide Nanoparticles (ZnO NPs) and N-Methylol Dimethyl Phosphonopropion Amide (MDPA) System for Flame Retardant Cotton Fabrics

. 2022 Aug 21 ; 14 (16) : . [epub] 20220821

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36015672

The aim of the present research work was to develop halogen and formaldehyde-free, durable flame retardant fabric along with multifunctional properties and to find the optimal conditions and parameters. In this research, zinc oxide nanoparticles (ZnO NPs) were grown onto 100% cotton fabric using the sonochemical method. Zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and sodium hydroxide (NaOH) were used as precursors. After ZnO NPs growth, N-Methylol dimethylphosphonopropionamide (MDPA) flame retardant was applied in the presence of 1, 2, 3, 4-butanetetracarboxylic acid (BTCA) as cross-linkers using the conventional pad-dry-cure method. Induced coupled plasma atomic emission spectroscopy (ICP-AES) was used to determine the deposited amount of Zn and phosphorous (P) contents. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) were employed to determine the surface morphology and characterization of the developed samples. Furthermore, the thermal degradation of the untreated and treated samples was investigated by thermogravimetric analysis (TGA). Furthermore, the vertical flame retardant test, limiting oxygen index (LOI), ultraviolet protection factor (UPF), and antibacterial activity of samples were examined. The developed samples showed excellent results for flame retardancy (i.e., 39 mm char length, 0 s after flame time, 0 s after glow time), 32.2 LOI, 143.76 UPF, and 100% antibacterial activity.

Erratum v

PubMed

Zobrazit více v PubMed

Mahbubul B.M., Khan M.A. An Overview on Surface Modification of Cotton Fiber for Apparel Use. J. Polym. Environ. 2013;21:181–190. doi: 10.1007/s10924-012-0476-8. DOI

Ravandi S.A.H., Valizadeh M. Improving Comfort in Clothing. Elsevier; Amsterdam, The Netherlands: 2011. Properties of fibers and fabrics that contribute to human comfort; pp. 61–78.

Yip J., Chan W.-Y. Latest Material and Technological Developments for Activewear. Elsevier; Amsterdam, The Netherlands: 2020. Textile fibers and fabrics; pp. 47–72.

Cheema H.A., El-Shafei A., Hauser P.J. Conferring Flame Retardancy on Cotton Using Novel Halogen-Free Flame Retardant Bifunctional Monomers: Synthesis, Characterizations and Applications. Carbohydr. Polym. 2013;92:885–893. doi: 10.1016/j.carbpol.2012.09.081. PubMed DOI

Mayer G.T., Plohl D., Derksen L., Lauer D., Neldner P., Ali W., Fuchs S., Gutmann J.S., Opwis K. A Green Water-soluble Cyclophosphazene as a Flame Retardant Finish for Textiles. Molecules. 2019;24:3100. doi: 10.3390/molecules24173100. PubMed DOI PMC

Rahman L.M.L., Islam M.T., Repon M.R., Hossain M.M., Sarker P. Comparative Dyeing Behavior and UV Protective Characteristics of Cotton Fabric Treated with Polyphenols Enriched Banana and Watermelon Biowaste. Sustain. Chem. Pharm. 2021;21:100417. doi: 10.1016/j.scp.2021.100417. DOI

Fan Z., Di L., Zhang X., Wang H. A Surface Dielectric Barrier Discharge Plasma for Preparing Cotton-Fabric-Supported Silver Nanoparticles. Nanomaterials. 2019;9:961. doi: 10.3390/nano9070961. PubMed DOI PMC

Zhang K.K., Zong L., Tan Y., Ji Q., Yun W., Shi R., Xia Y. Improve the Flame Retardancy of Cellulose Fibers by Grafting Zinc Ion. Carbohydr. Polym. 2016;136:121–127. doi: 10.1016/j.carbpol.2015.09.026. PubMed DOI

Saleemi S., Naveed T., Riaz T., Memon H., Awan J.A., Siyal M.I., Xu F., Bae J. Surface Functionalization of Cotton and Pc Fabrics Using SiO2 and ZnO Nanoparticles for Durable Flame Retardant Properties. Coatings. 2020;10:124. doi: 10.3390/coatings10020124. DOI

Yang S., Wang J., Huo S., Wang M., Cheng L. Synthesis of a Phosphorus/Nitrogen-Containing Additive with Multifunctional Groups and Its Flame-Retardant Effect in Epoxy Resin. Ind. Eng. Chem. Res. 2015;54:7777–7786. doi: 10.1021/acs.iecr.5b02026. DOI

Yang S., Hu Y., Zhang Q. Synthesis of a Phosphorus–Nitrogen-Containing Flame Retardant and Its Application in Epoxy Resin. High Perform. Polym. 2019;31:186–196. doi: 10.1177/0954008318756496. DOI

Rao T.N., Naidu T.M., Kim M.S., Parvatamma B., Prashanthi Y., Koo B.H. Influence of Zinc Oxide Nanoparticles and Char Forming Agent Polymer on Flame Retardancy of Intumescent Flame Retardant Coatings. Nanomaterials. 2020;10:42. doi: 10.3390/nano10010042. PubMed DOI PMC

Nguyen T.M., Chang S., Condon B., Slopek R., Graves E., Yoshioka-Tarver M. Structural Effect of Phosphoramidate Derivatives on the Thermal and Flame Retardant Behaviors of Treated Cotton Cellulose. Ind. Eng. Chem. Res. 2013;52:4715–4724. doi: 10.1021/ie400180f. DOI

Huong N.T., Khanh V.T.H., Linh N.P.D. Optimizing Content of Pyrovatex CP New and Knittex FFRC in Flame Retardant Treatment for Cotton Fabric. Ind. Textila. 2021;72:315–323. doi: 10.35530/IT.072.03.1648. DOI

Chang S.C., Condon B., Smith J., Nam S. Flame Resistant Cotton Fabric Containing Casein and Inorganic Materials Using an Environmentally-Friendly Microwave Assisted Technique. Fibers Polym. 2020;21:2246–2252. doi: 10.1007/s12221-020-9965-x. DOI

Van D.V.I., De B.J. Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis. Chemosphere. 2012;88:1119–1153. doi: 10.1016/j.chemosphere.2012.03.067. PubMed DOI

Yaqoob A.A., Parveen T., Umar K., Ibrahim M.N.M. Role of Nanomaterials in the Treatment of Waste Water. Water. 2020;12:495. doi: 10.3390/w12020495. DOI

Yaqoob A.A., Ahmad H., Parveen T., Ahmad A., Oves M., Ismail I.M.I., Qari H.A., Umar K., Ibrahim M.N.M. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front. Chem. 2020;8:1–23. doi: 10.3389/fchem.2020.00341. PubMed DOI PMC

Galaly A.R., Dawood N. Non-Thermal Plasma Treatment Coupled with a Photocatalyst for Antimicrobial Performance of Ihram Cotton Fabric. Nanomaterials. 2022;12:1004. doi: 10.3390/nano12061004. PubMed DOI PMC

Javed A., Wiener J., Tamulevičienė A., Tamulevičius T., Lazauskas A., Saskova J., Račkauskas S. One Step In-Situ Synthesis of Zinc Oxide Nanoparticles for Multifunctional Cotton Fabrics. Materials. 2021;14:3956. doi: 10.3390/ma14143956. PubMed DOI PMC

Abramova A.V., Abramov V.O., Fedulov I.S., Baranchikov A.E., Kozlov D.A., Veselova V.O., Kameneva S.V., Ivanov V.K., Cravotto G. Strong Antibacterial Properties of Cotton Fabrics Coated with Ceria Nanoparticles under High-Power Ultrasound. Nanomaterials. 2021;11:2704. doi: 10.3390/nano11102704. PubMed DOI PMC

Fernandes M., Padrão J., Ribeiro A.I., Fernandes R.D.V., Melro L., Nicolau T., Mehravani B., Alves C., Rodrigues R., Zille A. Polysaccharides and Metal Nanoparticles for Functional Textiles: A Review. Nanomaterials. 2022;12:1006. doi: 10.3390/nano12061006. PubMed DOI PMC

Tănase M.A., Soare A.C., Oancea P., Răducan A., Mihăescu C.I., Alexandrescu E., Petcu C., Diţu L.M., Ferbinţeanu M., Cojocaru B., et al. Facile in Situ Synthesis of Zno Flower-like Hierarchical Nanostructures by the Microwave Irradiation Method for Multifunctional Textile Coatings. Nanomaterials. 2021;11:2574. doi: 10.3390/nano11102574. PubMed DOI PMC

Nguyen H.T.P., Nguyen T.M.T., Hoang C.N., Le T.K., Lund T., Nguyen H.K.H., Huynh T.K.X. Characterization and Photocatalytic Activity of New Photocatalysts Based on Ag, F-Modified ZnO Nanoparticles Prepared by Thermal Shock Method. Arab. J. Chem. 2020;13:1837–1847. doi: 10.1016/j.arabjc.2018.01.018. DOI

Espitia P.J.P., Soares N.d.F.F., Coimbra J.S.D.R., de Andrade N.J., Cruz R.S., Medeiros E.A.A. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol. 2012;5:1447–1464. doi: 10.1007/s11947-012-0797-6. DOI

Moezzi A., McDonagh A.M., Cortie M.B. Zinc Oxide Particles: Synthesis, Properties and Applications. Chem. Eng. J. 2012;185–186:1–22. doi: 10.1016/j.cej.2012.01.076. DOI

Kale R.D., Soni M., Potdar T. A Flame Retardant, Antimicrobial and UV Protective Polyester Fabric by Solvent Crazing Route. J. Polym. Res. 2019;26:1–2. doi: 10.1007/s10965-019-1849-7. DOI

El-Hady M.M.A., Farouk A., Sharaf S. Flame Retardancy and UV Protection of Cotton Based Fabrics Using Nano ZnO and Polycarboxylic Acids. Carbohydr. Polym. 2013;92:400–406. doi: 10.1016/j.carbpol.2012.08.085. PubMed DOI

Samanta A.K., Bhattacharyya R., Jose S., Basu G., Chowdhury R. Fire Retardant Finish of Jute Fabric with Nano Zinc Oxide. Cellulose. 2017;24:1143–1157. doi: 10.1007/s10570-016-1171-z. DOI

Verbič A., Gorjanc M., Simončič B. Zinc Oxide for Functional Textile Coatings: Recent Advances. Coatings. 2019;9:550. doi: 10.3390/coatings9090550. DOI

Khan M.Z., Militky J., Petru M., Tomkov B., Ali A., Javed A., Azeem M., Křemenáková D. Ultra-Fast Growth of ZnO Nanorods on Cotton Fabrics and Their Self-Cleaning and Physiological Comfort Properties. Coatings. 2021;11:1309. doi: 10.3390/coatings11111309. DOI

Magovac E., Vončina B., Jordanov I., Grunlan J.C., Bischof S. Layer-by-Layer Deposition: A Promising Environmentally Benign Flame-Retardant Treatment for Cotton, Polyester, Polyamide and Blended Textiles. Materials. 2022;15:432. doi: 10.3390/ma15020432. PubMed DOI PMC

Akhavan S.F., Montazer M. In Situ Sonosynthesis of Nano TiO2 on Cotton Fabric. Ultrason. Sonochem. 2014;21:681–691. doi: 10.1016/j.ultsonch.2013.09.018. PubMed DOI

Javed A., Azeem M., Wiener J., Thukkaram M., Saskova J., Mansoor T. Ultrasonically Assisted In Situ Deposition of ZnO Nano Particles on Cotton Fabrics for Multifunctional Textiles. Fibers Polym. 2021;22:77–86. doi: 10.1007/s12221-021-0051-9. DOI

Ran J., He M., Li W., Cheng D., Wang X. Growing ZnO Nanoparticles on Polydopamine-Templated Cotton Fabrics for Durable Antimicrobial Activity and UV Protection. Polymers. 2018;10:495. doi: 10.3390/polym10050495. PubMed DOI PMC

Wojnarowicz J., Chudoba T., Lojkowski W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, process Parameters and Morphologies. Nanomaterials. 2020;10:1086. doi: 10.3390/nano10061086. PubMed DOI PMC

Mohajerani A., Burnett L., Smith J.V., Kurmus H., Milas J., Arulrajah A., Horpibulsuk S., Abdul Kadir A. Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use. Materials. 2019;12:3052. doi: 10.3390/ma12193052. PubMed DOI PMC

Jiao L., Ma J., Dai H. Preparation and Characterization of Self-Reinforced Antibacterial and Oil-Resistant Paper Using a NaOH/Urea/ZnO Solution. PLoS ONE. 2015;10:1–16. doi: 10.1371/journal.pone.0140603. PubMed DOI PMC

Sun X.Z., Bremner D.H., Wan N., Wang X. Development of Antibacterial ZnO-Loaded Cotton Fabric Based on in Situ Fabrication. Appl. Phys. A Mater. Sci. Process. 2016;122:1–9. doi: 10.1007/s00339-016-0482-0. DOI

Thi V.H.T., Lee B.-K. Development of Multifunctional Self-Cleaning and UV Blocking Cotton Fabric with Modification of Photoactive ZnO Coating via Microwave Method. J. Photochem. Photobiol. A Chem. 2017;338:13–22.

Shao D., Gao Y., Cao K., Wei Q. Rapid Surface Functionalization of Cotton Fabrics by Modified Hydrothermal Synthesis of ZnO. J. Text. Inst. 2017;108:1391–1397. doi: 10.1080/00405000.2016.1254581. DOI

Li Y., Zou Y., An D., Hou Y., Zhou Q., Zhang L. Investigation of Antibacterial Properties of Nano-ZnO Assembled Cotton Fibers. Fibers Polym. 2013;14:990–995. doi: 10.1007/s12221-013-0990-x. DOI

Sivakumar P.M., Balaji S., Prabhawathi V., Neelakandan R., Manoharan P.T., Doble M. Effective Antibacterial Adhesive Coating on Cotton Fabric Using ZnO Nanorods and Chalcone. Carbohydr. Polym. 2010;79:717–723. doi: 10.1016/j.carbpol.2009.09.027. DOI

Chung C., Lee M., Choe E.K. Characterization of Cotton Fabric Scouring by FT-IR ATR Spectroscopy. Carbohydr. Polym. 2004;58:417–420. doi: 10.1016/j.carbpol.2004.08.005. DOI

Zhao H., Liang Q., Lu Y. Microstructure and Properties of Copper Plating on Citric Acid Modified Cotton Fabric. Fibers Polym. 2015;16:593–598. doi: 10.1007/s12221-015-0593-9. DOI

Xu F., Zhang G., Wang P., Dai F. Durable and High-Efficiency Casein-Derived Phosphorus-Nitrogen-Rich Flame Retardants for Cotton Fabrics. Cellulose. 2022;29:2681–2697. doi: 10.1007/s10570-022-04430-y. DOI

Bazant P., Kuritka I., Munster L., Kalina L. Microwave Solvothermal Decoration of the Cellulose Surface by Nanostructured Hybrid Ag/ZnO Particles: A Joint XPS, XRD and SEM Study. Cellulose. 2015;22:1275–1293. doi: 10.1007/s10570-015-0561-y. DOI

Ceylan Ö., Van L.L., Rahier H., De Clerck K. The Effect of Water Immersion on the Thermal Degradation of Cotton Fibers. Cellulose. 2013;20:1603–1612. doi: 10.1007/s10570-013-9936-0. DOI

Barani H. Surface Activation of Cotton Fiber by Seeding Silver Nanoparticles and in Situ Synthesizing ZnO Nanoparticles. New J. Chem. 2014;38:4365–4370. doi: 10.1039/C4NJ00547C. DOI

Gaan S., Sun G. Effect of Phosphorus and Nitrogen on Flame Retardant Cellulose: A Study of Phosphorus Compounds. J. Anal. Appl. Pyrolysis. 2007;78:371–377. doi: 10.1016/j.jaap.2006.09.010. DOI

Fallah M.H., Fallah S.A., Zanjanchi M.A. Synthesis and Characterization of Nano-Sized Zinc Oxide Coating on Cellulosic Fibers: Photoactivity and Flame-Retardancy Study. Chin. J. Chem. 2011;29:1239–1245. doi: 10.1002/cjoc.201190230. DOI

Wu W., Zhen X., Yang C.Q. Correlation between Limiting Oxygen Index and Phosphorus Content of the Cotton Fabric Treated with a Hydroxy-Functional Organophosphorus Flame Retarding Finish and Melamine-Formaldehyde. J. Fire Sci. 2004;22:11–23. doi: 10.1177/0734904104035253. DOI

Qian X., Song L., Hu Y., Yuen R.K.K., Chen L., Guo Y., Hong N., Jiang S. Combustion and Thermal Degradation Mechanism of a Novel Intumescent Flame Retardant for Epoxy Acrylate Containing Phosphorus and Nitrogen. Ind. Eng. Chem. Res. 2011;50:1881–1892. doi: 10.1021/ie102196k. DOI

Siriviriyanun A., O’Rear E.A., Yanumet N. Self-Extinguishing Cotton Fabric with Minimal Phosphorus Deposition. Cellulose. 2008;15:731–737. doi: 10.1007/s10570-008-9223-7. DOI

Lam Y.L., Kan C.W., Yuen C.W.M. Effect of Zinc Oxide on Flame Retardant Finishing of Plasma Pre-Treated Cotton Fabric. Cellulose. 2011;18:151–165. doi: 10.1007/s10570-010-9466-y. DOI

Thi H.N., Hong K.V.T., Ha T.N., Phan D.N. Application of Plasma Activation in Flame-Retardant Treatment for Cotton Fabric. Polymers. 2020;12:1575. doi: 10.3390/polym12071575. PubMed DOI PMC

Liu Y., Zhou L., Ding F., Li S., Li R., Li Z., Huang D., Ren X. Flame-Retardant Cotton Fabrics Modified with Phosphoramidate Derivative via Electron Beam Irradiation Process. J. Ind. Text. 2019;51:396–408. doi: 10.1177/1528083719881816. DOI

Nguyen H.K., Sakai W., Nguyen C. Preparation of a Novel Flame Retardant Formulation for Cotton Fabric. Materials. 2020;13:54. doi: 10.3390/ma13010054. PubMed DOI PMC

Makhlouf G., Abdelkhalik A., Ameen H. Synthesis of a Novel Highly Efficient Flame-Retardant Coating for Cotton Fabrics with Low Combustion Toxicity and Antibacterial Properties. Cellulose. 2021;28:8785–8806. doi: 10.1007/s10570-021-04076-2. DOI

Tomak E.D., Cavdar A.D. Limited Oxygen Index Levels of Impregnated Scots Pine Wood. Thermochim. Acta. 2013;573:181–185. doi: 10.1016/j.tca.2013.09.022. DOI

Xie K., Gao A., Zhang Y. Flame Retardant Finishing of Cotton Fabric Based on Synergistic Compounds Containing Boron and Nitrogen. Carbohydr. Polym. 2013;98:706–710. doi: 10.1016/j.carbpol.2013.06.014. PubMed DOI

Wang L., Hu C., Shao L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC

Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015;7:219–242. doi: 10.1007/s40820-015-0040-x. PubMed DOI PMC

Shaikh S., Nazam N., Rizvi S.M.D., Ahmad K., Baig M.H., Lee E.J., Choi I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int. J. Mol. Sci. 2019;20:2468. doi: 10.3390/ijms20102468. PubMed DOI PMC

Anita S., Ramachandran T., Rajendran R., Koushik C.V., Mahalakshmi M. Preparation and Characterization of Zinc Oxide Nanoparticles and a Study of the Anti-Microbial Property of Cotton Fabric Treated with the Particles. J. Text. Apparel Technol. Manag. 2010;6

Souza D.A.R., Gusatti M., Ternus R.Z., Fiori M.A., Riella H.G. In Situ Growth of ZnO Nanostructures on Cotton Fabric by Solochemical Process for Antibacterial Purposes. J. Nanomater. 2018;2018:1–9. doi: 10.1155/2018/9082191. DOI

Matsumura Y., Ananthaswamy H.N. Toxic Effects of Ultraviolet Radiation on the Skin. Toxicol. Appl. Pharmacol. 2004;195:298–308. doi: 10.1016/j.taap.2003.08.019. PubMed DOI

Young A.R. Acute Effects of UVR on Human Eyes and Skin. Prog. Biophys. Mol. Biol. 2006;92:80–85. doi: 10.1016/j.pbiomolbio.2006.02.005. PubMed DOI

Javed A., Azeem M., Saskova J. P024_0663_ UV Protective Fabrics by Application of Ball Milled Neem Tree Leaves; Proceedings of the 19th World Textile Conference-Autex 2019; Ghent, Belgium. 11–15 June 2019; p. 3.

Gies P., Slevin T., Harrison S., Plowman P., Dain S., Moller L., Mawley F., Swift N. Australian/New Zealand Standard, AS/NZS 4399: 2017: Sun Protective Clothing–Evaluation and Classification. Standards Australia; Sydney, Australia: 2017.

Han K., Yu M. Study of the Preparation and Properties of UV-blocking Fabrics of a PET/TiO2 Nanocomposite Prepared by in Situ Polycondensation. J. Appl. Polym. Sci. 2006;100:1588–1593. doi: 10.1002/app.23312. DOI

Mondal S. Nanomaterials for UV Protective Textiles. J. Ind. Text. 2021;16:1528083721988949. doi: 10.1177/1528083721988949. DOI

Alebeid O.K., Zhao T. Review on: Developing UV Protection for Cotton Fabric. J. Text. Inst. 2017;108:2027–2039. doi: 10.1080/00405000.2017.1311201. DOI

Ghamsari M.S., Alamdari S., Han W., Park H.H. Impact of Nanostructured Thin ZnO Film in Ultraviolet Protection. Int. J. Nanomed. 2017;12:207–216. doi: 10.2147/IJN.S118637. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...