Different temporal trends in vascular plant and bryophyte communities along elevational gradients over four decades

. 2022 Aug ; 12 (8) : e9102. [epub] 20220822

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36016818

Despite many studies showing biodiversity responses to warming, the generality of such responses across taxonomic groups remains unclear. Very few studies have tested for evidence of bryophyte community responses to warming, even though bryophytes are major contributors to diversity and functioning in many ecosystems. Here, we report an empirical study comparing long-term change in bryophyte and vascular plant communities in two sites with contrasting long-term warming trends, using "legacy" botanical records as a baseline for comparison with contemporary resurveys. We hypothesized that ecological changes would be greater in sites with a stronger warming trend and that vascular plant communities, with narrower climatic niches, would be more sensitive than bryophyte communities to climate warming. For each taxonomic group in each site, we quantified the magnitude of changes in species' distributions along the elevation gradient, species richness, and community composition. We found contrasted temporal changes in bryophyte vs. vascular plant communities, which only partially supported the warming hypothesis. In the area with a stronger warming trend, we found a significant increase in local diversity and dissimilarity (β-diversity) for vascular plants, but not for bryophytes. Presence-absence data did not provide sufficient power to detect elevational shifts in species distributions. The patterns observed for bryophytes are in accordance with recent literature showing that local diversity can remain unchanged despite strong changes in composition. Regardless of whether one taxon is systematically more or less sensitive to environmental change than another, our results suggest that vascular plants cannot be used as a surrogate for bryophytes in terms of predicting the nature and magnitude of responses to warming. Thus, to assess overall biodiversity responses to global change, abundance data from different taxonomic groups and different community properties need to be synthesized.

Zobrazit více v PubMed

Anderson, M. J. (2001). A new method for non‐parametric multivariate analysis of variance. Austral Ecology, 26, 32–46.

Anderson, M. J. , Ellingsen, K. E. , & McArdle, B. H. (2006). Multivariate dispersion as a measure of beta diversity. Ecology Letters, 9, 683–693. PubMed

Augustine, D. J. , & Decalesta, D. (2003). Defining deer overabundance and threats to forest communities: From individual plants to landscape structure. Écoscience, 10, 472–486.

Bagella, S. (2014). Does cross‐taxon analysis show similarity in diversity patterns between vascular plants and bryophytes? Some answers from a literature review. Comptes Rendus Biologies, 337, 276–282. PubMed

Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134–143.

Baselga, A. , & Orme, C. D. L. (2012). betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution, 3, 808–812.

Bates, D. , Mächler, M. , Bolker, B. , & Walker, S. (2015). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67, 1–48.

Becker‐Scarpitta, A. , Bardat, J. , Lalanne, A. , & Vellend, M. (2017). Long‐term community change: Bryophytes are more responsive than vascular plants to nitrogen deposition and warming. Journal of Vegetation Science, 28(6), 1220–1229. 10.1111/jvs.12579 DOI

Becker‐Scarpitta, A. , Vissault, S. , & Vellend, M. (2019). Four decades of plant community change along a continental gradient of warming. Global Change Biology, 25, 1629–1641. PubMed

Bergamini, A. , Ungricht, S. , & Hofmann, H. (2009). An elevational shift of cryophilous Bryophytes in the last century ‐ an effect of climate warming? Diversity and Distributions, 15, 871–879.

Bertrand, R. , Lenoir, J. , Piedallu, C. , Riofrío‐Dillon, G. , de Ruffray, P. , Vidal, C. , Pierrat, J. C. , & Gégout, J. C. (2011). Changes in plant community composition lag behind climate warming in lowland forests. Nature, 479, 517–520. PubMed

Blowes, S. A. , Supp, S. R. , Antão, L. H. , Bates, A. , Bruelheide, H. , Chase, J. M. , Moyes, F. , Magurran, A. , McGill, B. , Myers‐Smith, I. H. , Winter, M. , Bjorkman, A. D. , Bowler, D. E. , Byrnes, J. E. K. , Gonzalez, A. , Hines, J. , Isbell, F. , Jones, H. P. , Navarro, L. M. , … Dornelas, M. (2019). The geography of biodiversity change in marine and terrestrial assemblages. Science, 366, 339–345. PubMed

Braun‐Blanquet, J. , Roussine, N. , & Nègre, R. (1952). Les Groupements Végétaux de la France Méditerranéenne. CNRS.

Bruun, H. H. , Moen, J. , Virtanen, R. , Grytnes, J. A. , Oksanen, L. , & Angerbjörn, A. (2006). Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. Journal of Vegetation Science, 17, 37–46.

Chen, I.‐C. , Hill, J. K. , Ohlemüller, R. , Roy, D. B. , & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024–1026. PubMed

Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343–366.

Chytrý, M. , Tichý, L. , Hennekens, S. M. , & Schaminée, J. H. J. (2014). Assessing vegetation change using vegetation‐plot databases: a risky business. Applied Vegetation Science, 17, 32–41.

Clavel, J. , Julliard, R. , & Devictor, V. (2011). Worldwide decline of specialist species: toward a global functional homogenization? Frontiers in Ecology and the Environment, 9, 222–228.

Commission Joint International (2014). Canada – United States, Air quality agreement – progress report.

Côté, S. D. , Rooney, T. P. , Tremblay, J. P. , Dussault, C. , & Waller, D. M. (2004). Ecological impacts of Deer overabundance. Annual Review of Ecology, Evolution, and Systematics, 35, 113–147.

De Cáceres, M. , Legendre, P. , & Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119(10), 1674–1684. 10.1111/j.1600-0706.2010.18334.x DOI

de la Cretaz, A. L. , & Kelty, M. J. (2002). Development of tree regeneration in fern‐dominated forest understories after reduction of Deer browsing. Restoration Ecology, 10, 416–426.

Delgado, V. , & Ederra, A. (2013). Long‐term changes (1982–2010) in the bryodiversity of Spanish beech forests assessed by means of Ellenberg indicator values of temperature, nitrogen, light and pH. Biological Conservation, 157, 99–107.

Dornelas, M. , Gotelli, N. J. , McGill, B. , Shimadzu, H. , Moyes, F. , Sievers, C. , & Magurran, A. E. (2014). Assemblage time series reveal biodiversity change but not systematic loss. Science, 344, 296–299. PubMed

Faubert, J. (2012). Flore des bryophytes du Québec‐Labrador, Vol. 1, Anthocérotes et hépatiques (p. 356). Société Québécoise de Bryologie.

Faubert, J. (2013). Flore des bryophytes du Québec‐Labrador, Vol. 2, Mousses, première partie (p. 402). Société Québécoise de Bryologie.

Faubert, J. (2014). Flore des bryophytes du Québec‐Labrador, Vol. 3, Mousses, seconde partie (p. 456). Société Québécoise de Bryologie.

Fenton, N. J. , & Bergeron, Y. (2013). Stochastic processes dominate during boreal bryophyte community assembly. Ecology, 94, 1993–2006. PubMed

Frerker, K. , Sabo, A. , & Waller, D. (2014). Long‐term regional shifts in plant community composition are largely explained by local deer impact experiments. PLoS One, 9, e115843. PubMed PMC

Geffert, J. L. , Frahm, J. P. , Barthlott, W. , & Mutke, J. (2013). Global moss diversity: spatial and taxonomic patterns of species richness. Journal of Bryology, 35, 1–11.

Gignac, L. D. (2001). Bryophytes as indicators of climate change. The Bryologist, 104, 410–420.

Glime, J. M. (2007). Bryophyte ecology. Vol. 1. Physiological ecology . Ebook sponsored by Michigan Technological University and the International Association of Bryologists.

Glime, J. M. (Ed.) (2013). Life cycles: Surviving change, Chap 2.2. In Bryophyte ecology. Vol. 1 Physiology and Ecology Ebook sponsored by Michigan Technological University and the International Association of Bryologists. https://digitalcommons.mtu.edu/bryophyte‐ecology/

Gotelli, N. J. , Shimadzu, H. , Dornelas, M. , McGill, B. , Moyes, F. , & Magurran, A. E. (2017). Community‐level regulation of temporal trends in biodiversity. Science Advances, 3(7), e1700315. 10.1126/sciadv.1700315 PubMed DOI PMC

Grytnes, J. A. , Heegaard, E. , & Ihlen, P. G. (2006). Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecologica, 29, 241–246.

Harrison, S. (2020). Plant community diversity will decline more than increase under climatic warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, 20190106. PubMed PMC

He, X. , et al. (2016). Will bryophytes survive in a warming world? Perspectives in Plant Ecology, Evolution and Systematics, 19, 49–60.

Hédl, R. , Bernhardt‐Römermann, M. , Grytnes, J. A. , Jurasinski, G. , & Ewald, J. (2017). Resurvey of historical vegetation plots: a tool for understanding long‐term dynamics of plant communities. Applied Vegetation Science, 20, 161–163.

Hember, R. A. (2018). Spatially and temporally continuous estimates of annual total nitrogen deposition over North America, 1860–2013. Data in Brief, 17, 134–140. PubMed PMC

HilleRisLambers, J. , Adler, P. B. , Harpole, W. S. , Levine, J. M. , & Mayfield, M. M. (2012). Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227–248.

Hudson, J. M. G. , & Henry, G. H. R. (2010). High Arctic plant community resists 15 years of experimental warming. Journal of Ecology, 98, 1035–1041.

Jägerbrand, A. K. , Kudo, G. , Alatalo, J. M. , & Molau, U. (2012). Effects of neighboring vascular plants on the abundance of bryophytes in different vegetation types. Polar Science, 6, 200–208.

Jiang, Y. , Liu, X. , Song, S. , Yu, Z. , & Shao, X. (2015). Diversity and distribution of ground bryophytes in broadleaved forests in Mabian Dafengding National Nature Reserve, Sichuan, China. Acta Ecologica Sinica, 35, 13–19.

Kaufmann, S. , Hauck, M. , & Leuschner, C. (2017). Comparing the plant diversity of paired beech primeval and production forests: Management reduces cryptogam, but not vascular plant species richness. Forest Ecology and Management, 400, 58–67.

Kraft, N. J. B. , Comita, L. S. , Chase, J. M. , Sanders, N. J. , Swenson, N. G. , Crist, T. O. , Stegen, J. C. , Vellend, M. , Boyle, B. , Anderson, M. J. , Cornell, H. V. , Davies, K. F. , Freestone, A. L. , Inouye, B. D. , Harrison, S. P. , & Myers, J. A. (2011). Disentangling the drivers of diversity along latitudinal and elevational gradients. Science, 333, 1755–1758. PubMed

Lalanne, A. , Bardat, J. , Lalanne‐Amara, F. , Gautrot, T. , & Ponge, J. F. (2008). Opposite responses of vascular plant and moss communities to changes in humus form, as expressed by the Humus Index. Journal of Vegetation Science, 19, 645–652.

Lee, T. D. , & La Roi, G. H. (1979). Bryophyte and understory vascular plant beta diversity in relation to moisture and elevation gradients. Vegetatio, 40, 29–38.

Lenoir, J. , & Svenning, J.‐C. (2015). Climate‐related range shifts – a global multidimensional synthesis and new research directions. Ecography, 38, 15–28.

Lenoir, J. , Bertrand, R. , Comte, L. , Bourgeaud, L. , Hattab, T. , Murienne, J. , & Grenouillet, G. (2020). Species better track climate warming in the oceans than on land. Nature Ecology & Evolution, 4(8), 1044–1059. 10.1038/s41559-020-1198-2 PubMed DOI

Lenoir, J. , Gégout, J. C. , Marquet, P. A. , de Ruffray, P. , & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320, 1768–1771. PubMed

Lenoir, J. , Virtanen, R. , Oksanen, J. , Oksanen, L. , Luoto, M. , Grytnes, J. A. , & Svenning, J. C. (2012). Dispersal ability links to cross‐scale species diversity patterns across the Eurasian Arctic tundra. Global Ecology and Biogeography, 21, 851–860.

Lewis, L. R. , Ickert‐Bond, S. M. , Biersma, E. M. , Convey, P. , Goffinet, B. , Hassel, K. , Kruijer, H. J. D. , la Farge, C. , Metzgar, J. , Stech, M. , Villarreal, J. C. , & McDaniel, S. F. (2017). Future directions and priorities for Arctic bryophyte research. Arctic Science, 3(3), 475–497. 10.1139/as-2016-0043 DOI

Lindo, Z. , & Gonzalez, A. (2010). The bryosphere: An integral and influential component of the Earth's biosphere. Ecosystems, 13, 612–627.

Magurran, A. E. , Deacon, A. E. , Moyes, F. , Shimadzu, H. , Dornelas, M. , Phillip, D. A. T. , & Ramnarine, I. W. (2018). Divergent biodiversity change within ecosystems. Proceedings of the National Academy of Sciences, 115, 1843–1847. PubMed PMC

Majcen, Z. (1981). Les forets du parc national Forillon, Gaspésie, Québec, étude phytosociologique.

Marcotte, G. and Grandtner, M. (1974). Étude écologique de la végétsation forestière du Mont Mégantic.

Marie‐Victorin, F. (1997). Flore laurentienne. Troisième édition mise à jour et annotée par L. Brouillet, SG Hay, I. Goulet, M. Blondeau, J. Cayouette et J. Labrecque. Les Presses de l'Université de Montréal.

Mateo, R. G. , Broennimann, O. , Normand, S. , Petitpierre, B. , Araújo, M. B. , Svenning, J. C. , Baselga, A. , Fernández‐González, F. , Gómez‐Rubio, V. , Muñoz, J. , Suarez, G. M. , Luoto, M. , Guisan, A. , & Vanderpoorten, A. (2016). The mossy north: an inverse latitudinal diversity gradient in European bryophytes. Scientific Reports, 6, 25546. PubMed PMC

McCune, J. L. , & Vellend, M. (2013). Gains in native species promote biotic homogenization over four decades in a human‐dominated landscape. Journal of Ecology, 101, 1542–1551.

McGill, B. J. , Dornelas, M. , Gotelli, N. J. , & Magurran, A. E. (2015). Fifteen forms of biodiversity trend in the Anthropocene. Trends in Ecology & Evolution, 30, 104–113. PubMed

Möls, T. , Vellak, K. , Vellak, A. , & Ingerpuu, N. (2013). Global gradients in moss and vascular plant diversity. Biodiversity and Conservation, 22, 1537–1551.

Mouquet, N. , & Loreau, M. (2003). Community patterns in source‐sink metacommunities. The American Naturalist, 162, 544–557. PubMed

Nascimbene, J. , & Spitale, D. (2017). Patterns of beta‐diversity along elevational gradients inform epiphyte conservation in alpine forests under a climate change scenario. Biological Conservation, 216, 26–32.

Odland, A. , Reinhardt, S. , & Pedersen, A. (2015). Differences in richness of vascular plants, mosses, and liverworts in southern Norwegian alpine vegetation. Plant Ecology & Diversity, 8(1), 37–47. 10.1080/17550874.2013.862751 DOI

Outhwaite, C. L. , Gregory, R. D. , Chandler, R. E. , Collen, B. , & Isaac, N. J. B. (2020). Complex long‐term biodiversity change among invertebrates, bryophytes and lichens. Nature Ecology and Evolution, 4, 384–392. PubMed

Patiño, J. , & Vanderpoorten, A. (2018). Bryophyte Biogeography. Critical Reviews in Plant Sciences, 37, 175–209.

Pauli, H. , Gottfried, M. , Dullinger, S. , Abdaladze, O. , Akhalkatsi, M. , Alonso, J. L. B. , Coldea, G. , Dick, J. , Erschbamer, B. , Calzado, R. F. , Ghosn, D. , Holten, J. I. , Kanka, R. , Kazakis, G. , Kollár, J. , Larsson, P. , Moiseev, P. , Moiseev, D. , Molau, U. , … Grabherr, G. (2012). Recent plant diversity changes on Europe's mountain summits. Science, 336, 353–355. PubMed

Pharo, E. J. , & Vitt, D. H. (2000). Local variation in bryophyte and macro‐lichen cover and density in diversity in montane forests of western Canada. The Bryologist, 103, 455–466.

Raabe, S. , Müller, J. , Manthey, M. , Dürhammer, O. , Teuber, U. , Göttlein, A. , Förster, B. , Brandl, R. , & Bässler, C. (2010). Drivers of bryophyte diversity allow implications for forest management with a focus on climate change. Forest Ecology and Management, 260, 1956–1964.

Rooney, T. P. (2009). High white‐tailed deer densities benefit graminoids and contribute to biotic homogenization of forest ground‐layer vegetation. Plant Ecology, 202, 103–111.

Rumpf, S. B. , Hülber, K. , Klonner, G. , Moser, D. , Schütz, M. , Wessely, J. , Willner, W. , Zimmermann, N. E. , & Dullinger, S. (2018). Range dynamics of mountain plants decrease with elevation. Proceedings of the National Academy of Sciences, 115, 1848–1853. PubMed PMC

Rumpf, S. B. , Hülber, K. , Zimmermann, N. E. , & Dullinger, S. (2019). Elevational rear edges shifted at least as much as leading edges over the last century. Global Ecology and Biogeography, 28(4), 533–543. 10.1111/geb.12865 DOI

Rydin, H. (2008). Population and community ecology of bryophytes. In Bryophyte Biology (pp. 393–444). Cambridge University Press.

Savage, J. , & Vellend, M. (2015). Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography, 38, 546–555.

Slack, N. G. (1977). Species diversity and community structure in bryophytes: New York State studies. New York State Museum, The University of the State of New York.

Socolar, J. , Gilroy, J. , Kunin, W. , & Edwards, D. (2016). How should beta‐diversity inform biodiversity conservation? Trends in Ecology & Evolution, 31(1), 67–80. 10.1016/j.tree.2015.11.005. PubMed DOI

Spaak, J. W. , Baert, J. M. , Baird, D. J. , Eisenhauer, N. , Maltby, L. , Pomati, F. , Radchuk, V. , Rohr, J. R. , van den Brink, P. J. , & de Laender, F. (2017). Shifts of community composition and population density substantially affect ecosystem function despite invariant richness. Ecology Letters, 20, 1315–1324. PubMed

Steinbauer, M. J. , Grytnes, J. A. , Jurasinski, G. , Kulonen, A. , Lenoir, J. , Pauli, H. , Rixen, C. , Winkler, M. , Bardy‐Durchhalter, M. , Barni, E. , Bjorkman, A. D. , Breiner, F. T. , Burg, S. , Czortek, P. , Dawes, M. A. , Delimat, A. , Dullinger, S. , Erschbamer, B. , Felde, V. A. , … Wipf, S. (2018). Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 556, 231–234. PubMed

Stockli, V. , Wipf, S. , Nilsson, C. , & Rixen, C. (2012). Using historical plant surveys to track biodiversity on mountain summits. Plant Ecology and Diversity, 4(4), 415–425. 10.1080/17550874.2011.651504 DOI

Tuba, Z. , Slack, N. G. , & Stark, L. R. (2011). Bryophyte ecology and climate change. Cambridge University Press.

Turetsky, M. R. (2003). The role of Bryophytes in carbon and nitrogen cycling. The Bryologist, 106, 395–409.

UQCN (2005). Rapport de synthèse ‐ Parc National de Forillon. Importance et impacts des pressions périphériques sur le maintien de l'intégrité écologique des aires protégées au Québec.

Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348, 571–573. PubMed

Vanneste, T. , Michelsen, O. , Graae, B. J. , Kyrkjeeide, M. O. , Holien, H. , Hassel, K. , Lindmo, S. , Kapás, R. E. , & de Frenne, P. (2017). Impact of climate change on alpine vegetation of mountain summits in Norway. Ecological Research, 32, 579–593.

Vellend, M. , Brown, C. D. , Kharouba, H. M. , McCune, J. L. , & Myers‐Smith, I. H. (2013). Historical ecology: Using unconventional data sources to test for effects of global environmental change. American Journal of Botany, 100, 1294–1305. PubMed

Vellend, M. , Dornelas M., Baeten L., Beauséjour R., Brown C.D., de Frenne P., Elmendorf S.C., Gotelli N.J., Moyes F., Myers‐Smith I.H., Magurran A.E., McGill B., Shimadzu H., Sievers C. 2017. Estimates of local biodiversity change over time stand up to scrutiny. Ecology 98: 583–590. PubMed

Vellend, M. , Baeten, L. , Becker‐Scarpitta, A. , Boucher‐Lalonde, V. , McCune, J. , Messier, J. , Myers‐Smith, I. H. , & Sax, D. F. (2017). Plant biodiversity change across scales during the anthropocene. Annual Review of Plant Biology, 68, 563–586. PubMed

Verheyen, K. , de Frenne, P. , Baeten, L. , Waller, D. M. , Hédl, R. , Perring, M. P. , Blondeel, H. , Brunet, J. , Chudomelová, M. , Decocq, G. , de Lombaerde, E. , Depauw, L. , Dirnböck, T. , Durak, T. , Eriksson, O. , Gilliam, F. S. , Heinken, T. , Heinrichs, S. , Hermy, M. , … Bernhardt‐Römermann, M. (2017). Combining biodiversity resurveys across regions to advance global change research. Bioscience, 67, 73–83. PubMed PMC

Virtanen, R. , Eskelinen, A. , & Harrison, S. (2017). Comparing the responses of bryophytes and short‐statured vascular plants to climate shifts and eutrophication. (S Power, Ed.). Functional Ecology, 31, 946–954.

Vittoz, P. , Camenisch, M. , Mayor, R. , Miserere, L. , Vust, M. , & Theurillat, J. P. (2010). Subalpine‐nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Botanica Helvetica, 120, 139–149.

Walker, M. D. , Wahren, C. H. , Hollister, R. D. , Henry, G. H. R. , Ahlquist, L. E. , Alatalo, J. M. , Bret‐Harte, M. S. , Calef, M. P. , Callaghan, T. V. , Carroll, A. B. , Epstein, H. E. , Jónsdóttir, I. S. , Klein, J. A. , Magnússon, B. , Molau, U. , Oberbauer, S. F. , Rewa, S. P. , Robinson, C. H. , Shaver, G. R. , … Wookey, P. A. (2006). Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America, 103, 1342–1346. PubMed PMC

Yagouti, A. , Boulet, G. , Vincent, L. , Vescovi, L. , & Mekis, É. (2008). Observed changes in daily temperature and precipitation indices for southern Québec, 1960–2005. Atmosphere‐Ocean, 46(2), 243–256. 10.3137/ao.460204 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...