Intermetallic Copper-Based Electride Catalyst with High Activity for C-H Oxidation and Cycloaddition of CO2 into Epoxides
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000754
Operational Program Research, Development, and Education - European Regional Development Fund
CZ.02.1.01/0.0/0.0/17_048/0007323
ERDF Project "Development of Pre-Applied Research in Nanotechnology and Biotechnology"
Youth and Sports of the Czech Republic
PubMed
36026533
DOI
10.1002/smll.202201712
Knihovny.cz E-zdroje
- Klíčová slova
- carbon dioxide fixation, copper-based intermetallic electride catalysts, cyclic carbonates, heterogeneous catalysis, rare-earth elements, selective benzylic C-H oxidation,
- Publikační typ
- časopisecké články MeSH
Inorganic electrides have been proved to be efficient hosts for incorporating transition metals, which can effectively act as active sites giving an outstanding catalytic performance. Here, it is demonstrated that a reusable and recyclable (for more than 7 times) copper-based intermetallic electride catalyst (LaCu0.67 Si1.33 ), in which the Cu sites activated by anionic electrons with low-work function are uniformly dispersed in the lattice framework, shows vast potential for the selective C-H oxidation of industrially important hydrocarbons and cycloaddition of CO2 with epoxide. This leads to the production of value-added cyclic carbonates under mild reaction conditions. Importantly, the LaCu0.67 Si1.33 catalyst enables much higher turnover frequencies for the C-H oxidation (up to 25 276 h-1 ) and cycloaddition of CO2 into epoxide (up to 800 000 h-1 ), thus exceeding most nonnoble as well as noble metal catalysts. Density functional theory investigations have revealed that the LaCu0.67 Si1.33 catalyst is involved in the conversion of N-hydroxyphthalimide (NHPI) into the phthalimido-N-oxyl (PINO), which then triggers selective abstraction of an H atom from ethylbenzene for the generation of a radical susceptible to further oxygenation in the presence of O2 .
Zobrazit více v PubMed
A. E. Shilov, G. B. Shul'pin, Chem. Rev. 1997, 97, 2879.
L. Kesavan, R. Tiruvalam, M. H. A. Rahim, M. I. bin Saiman, D. I. Enache, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, S. H. Taylor, D. W. Knight, C. J. Kiely, G. J. Hutchings, Science 2011, 331, 195.
Y.-J. Liu, H. Xu, W.-J. Kong, M. Shang, H.-X. Dai, J.-Q. Yu, Nature 2014, 515, 389.
G. Chen, Y. Zhao, G. Fu, P. N. Duchesne, L. Gu, Y. Zheng, X. Weng, M. Chen, P. Zhang, C.-W. Pao, J.-F. Lee, N. Zheng, Science 2014, 344, 495.
C. Yuan, Y. Liang, T. Hernandez, A. Berriochoa, K. N. Houk, D. Siegel, Nature 2013, 499, 192.
N. Ghavtadze, F. S. Melkonyan, A. V. Gulevich, C. Huang, V. Gevorgyan, Nat. Chem. 2014, 6, 122.
S. Das, C. D. Incarvito, R. H. Crabtree, G. W. Brudvig, Science 2006, 312, 1941.
M. Jafarpour, F. Feizpour, A. Rezaeifard, RSC Adv. 2016, 6, 54649.
J. Muzart, Chem. Rev. 1992, 92, 113.
M. I. bin Saiman, G. L. Brett, R. Tiruvalam, M. M. Forde, K. Sharples, A. Thetford, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, D. M. Murphy, D. Bethell, D. J. Willock, S. H. Taylor, D. W. Knight, C. J. Kiely, G. J. Hutchings, Angew. Chem., Int. Ed. 2012, 51, 5981.
S. M. Silvestre, J. A. R. Salvador, Chem. Inform. 2007, 38, https://doi.org/10.1002/chin.200725040.
P. Zhang, H. Lu, Y. Zhou, L. Zhang, Z. Wu, S. Yang, H. Shi, Q. Zhu, Y. Chen, S. Dai, Nat. Commun. 2015, 6, 8446.
F. Wang, J. Xu, X. Li, J. Gao, L. Zhou, R. Ohnishi, Adv. Synth. Catal. 2005, 347, 1987.
A. Santiago-Portillo, S. Navalón, F. G. Cirujano, F. X. L.i. Xamena, M. Alvaro, H. Garcia, ACS Catal. 2015, 5, 3216.
X. Lin, Z. Nie, L. Zhang, S. Mei, Y. Chen, B. Zhang, R. Zhu, Z. Liu, Green Chem. 2017, 19, 2164.
S. Fan, W. Dong, X. Huang, H. Gao, J. Wang, Z. Jin, J. Tang, G. Wang, ACS Catal. 2017, 7, 243.
P. Zhang, Y. Gong, H. Li, Z. Chen, Y. Wang, Nat. Commun. 2013, 4, 1593.
P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Science 2016, 352, 797.
B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634.
B. Singh, V. Sharma, R. P. Gaikwad, P. Fornasiero, R. Zbořil, M. B. Gawande, Small 2021, 17, 2006473.
A. Bakandritsos, R. G. Kadam, P. Kumar, G. Zoppellaro, M. Medved', J. Tuček, T. Montini, O. Tomanec, P. Andrýsková, B. Drahoš, R. S. Varma, M. Otyepka, M. B. Gawande, P. Fornasiero, R. Zbořil, Adv. Mater. 2019, 31, 1900323.
I. S. Pieta, R. G. Kadam, P. Pieta, D. Mrdenovic, R. Nowakowski, A. Bakandritsos, O. Tomanec, M. Petr, M. Otyepka, R. Kostecki, M. A. M. Khan, R. Zbořil, M. B. Gawande, Adv. Mater. Interfaces 2021, 8, 2001822.
J. Jones, H. Xiong, A. T. DeLaRiva, E. J. Peterson, H. Pham, S. R. Challa, G. Qi, S. Oh, M. H. Wiebenga, X. I. Pereira Hernández, Y. Wang, A. K. Datye, Science 2016, 353, 150.
Y. Toda, H. Hirayama, N. Kuganathan, A. Torrisi, P. V. Sushko, H. Hosono, Nat. Commun. 2013, 4, 2378.
S. Choi, Y. J. Kim, S. M. Kim, J. W. Yang, S. W. Kim, E. J. Cho, Nat. Commun. 2014, 5, 4881.
S. M. Kim, H. S. Yoo, H. Hosono, J. W. Yang, S. W. Kim, Sci. Rep. 2015, 5, 10366.
M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P. V. Sushko, T. Yokoyama, M. Hara, H. Hosono, Nat. Commun. 2015, 6, 6731.
S. Kanbara, M. Kitano, Y. Inoue, T. Yokoyama, M. Hara, H. Hosono, J. Am. Chem. Soc. 2015, 137, 14517.
Y. Lu, J. Li, T. Tada, Y. Toda, S. Ueda, T. Yokoyama, M. Kitano, H. Hosono, J. Am. Chem. Soc. 2016, 138, 3970.
F. Studt, F. Abild-Pedersen, T. Bligaard, R. Z. Sørensen, C. H. Christensen, J. K. Nørskov, Science 2008, 320, 1320.
M. Armbrüster, K. Kovnir, M. Friedrich, D. Teschner, G. Wowsnick, M. Hahne, P. Gille, L. Szentmiklósi, M. Feuerbacher, M. Heggen, F. Girgsdies, D. Rosenthal, R. Schlögl, Y. Grin, Nat. Mater. 2012, 11, 690.
T.-N. Ye, Y. Lu, J. Li, T. Nakao, H. Yang, T. Tada, M. Kitano, H. Hosono, J. Am. Chem. Soc. 2017, 139, 17089.
Y. Lu, J. Li, T.-N. Ye, Y. Kobayashi, M. Sasase, M. Kitano, H. Hosono, ACS Catal. 2018, 8, 110548.
G. Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651.
J. Deng, Y. Li, Y. Cao, H. Wang, H. Yu, Q. Zhang, J. Zuo, F. Peng, Catal. Sci. Technol. 2020, 10, 2523.
Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933.
C. J. Whiteoak, A. Nova, F. Maseras, A. W. Kleij, ChemSusChem 2012, 5, 2032.
D. J. Darensbourg, Chem. Rev. 2007, 107, 2388.
B. Schäffner, F. Schäffner, S. P. Verevkin, A. Börner, Chem. Rev. 2010, 110, 4554.
Y. Wang, Y. Qin, X. Wang, F. Wang, ACS Catal. 2015, 5, 393.
M. Ding, H.-L. Jiang, ACS Catal. 2018, 8, 3194.
G.-W. Yang, C.-K. Xu, R. Xie, Y.-Y. Zhang, X.-F. Zhu, G.-P. Wu, J. Am. Chem. Soc. 2021, 143, 3455.
W. Wang, C. Li, L. Yan, Y. Wang, M. Jiang, Y. Ding, ACS Catal. 2016, 6, 6091.
F. D. Bobbink, D. Vasilyev, M. Hulla, S. Chamam, F. Menoud, G. Laurenczy, S. Katsyuba, P. J. Dyson, ACS Catal. 2018, 8, 2589.
Y. Yan, P. Feng, Q.-Z. Zheng, Y.-F. Liang, J.-F. Lu, Y. Cui, N. Jiao, Angew. Chem., Int. Ed. 2013, 52, 5827.
S. Ghosh, J. Castillo-Lora, A. V. Soudackov, J. M. Mayer, S. Hammes-Schiffer, Nano Lett. 2017, 17, 5762.
J. M. Hoover, B. L. Ryland, S. S. Stahl, J. Am. Chem. Soc. 2013, 135, 2357.
C. Zhang, Z. Huang, J. Lu, N. Luo, F. Wang, J. Am. Chem. Soc. 2018, 140, 2032.
M. G. Capraro, P. Franchi, O. Lanzalunga, A. Lapi, M. Lucarini, J. Org. Chem. 2014,79, 6435.
C. Zhang, H. Li, J. Lu, X. Zhang, K. E. MacArthur, M. Heggen, F. Wang, ACS Catal. 2017, 7, 3419.
M. C. Biesinger, Surf. Interface Anal. 2017, 49, 1325.
S. Y. Lee, H. Jung, N. K. Kim, H. S. Oh, B. K. Min, Y. Hwang, J. Am. Chem. Soc. 2018,140, 8681.
P. Zhang, T. Wang, H. Zeng, Appl. Surf. Sci. 2017, 391, 404.
A. I. Aria, P. R. Kidambi, R. S. Weatherup, L. Xiao, J. A. Williams, S. Hofmann, J. Phys. Chem. C 2016, 120, 2215.