A pre-trained convolutional neural network with optimized capsule networks for chest X-rays COVID-19 diagnosis

. 2023 ; 26 (2) : 1389-1403. [epub] 20220823

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36034678

Coronavirus disease (COVID-19) is rapidly spreading worldwide. Recent studies show that radiological images contain accurate data for detecting the coronavirus. This paper proposes a pre-trained convolutional neural network (VGG16) with Capsule Neural Networks (CapsNet) to detect COVID-19 with unbalanced data sets. The CapsNet is proposed due to its ability to define features such as perspective, orientation, and size. Synthetic Minority Over-sampling Technique (SMOTE) was employed to ensure that new samples were generated close to the sample center, avoiding the production of outliers or changes in data distribution. As the results may change by changing capsule network parameters (Capsule dimensionality and routing number), the Gaussian optimization method has been used to optimize these parameters. Four experiments have been done, (1) CapsNet with the unbalanced data sets, (2) CapsNet with balanced data sets based on class weight, (3) CapsNet with balanced data sets based on SMOTE, and (4) CapsNet hyperparameters optimization with balanced data sets based on SMOTE. The performance has improved and achieved an accuracy rate of 96.58% and an F1- score of 97.08%, a competitive optimized model compared to other related models.

Zobrazit více v PubMed

Wynants L, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 2020;369:m1328. doi: 10.1136/bmj.m1328. PubMed DOI PMC

Sarkodie BD, et al. Diagnosing COVID-19 from chest X-ray in the resource-limited environment-case report," medical case reports. Imedpub J. 2020;6(1):1–3. doi: 10.36648/2471-8041.6.2.135. DOI

Harsh Panwar PK, Gupta MK, Siddiqui RM-M, Singh V. Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet. Chaos Solitons & Fractals. 2020 doi: 10.1016/j.chaos.2020.109944. PubMed DOI PMC

Li D, Li S. An artificial intelligence deep learning platform achieves high diagnostic accuracy for Covid-19 pneumonia by reading chest X-ray images. iScience. 2022;25(4):104031. doi: 10.1016/j.isci.2022.104031. PubMed DOI PMC

H. Wang and Y. Xia. ChestNet: A deep neural network for the classification of thoracic diseases on chest radiography. arXiv preprint 2020, arXiv: https://arxiv.org/abs/1807.03058 PubMed

P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya and M.P. Lungren. ChexNet: radiologist-level pneumonia detection on chest X-rays with deep learning. 2017, arXiv preprint https://arxiv.org/abs/1711.05225v3

M. Farooq and A. Hafeez, COVID-ResNet: a deep learning framework for screening of COVID19 from radiographs, 2020, arXiv:2003.14395,https://arxiv.org/abs/2003.14395

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst (2018) Matrix capsules with EM routing. International Conference on Learning Representations (ICLR18), pp. 1–15.

S. Sabour, N. Frosst and G. E. Hinton, Dynamic routing between capsules, Advances in Information Processing Systems, 2017, https://arxiv.org/abs/1710.09829

G. E. Hinton, S. Sabour and N. Frosst, "Matrix capsules with em routing," ICLR (2018).

A. Punjabi, J. Schmid, and A. K. Katsaggelos Examining the Benefits of Capsule Neural Networks, 2020 https://arxiv.org/abs/2001.10964

Patil SA, Kuchanur MB. Lung cancer classification using image processing. Int. J. Eng. Innov. Technol. 2012;2(3):37–42.

Er O, Yumusak N, Temurtas F. Chest diseases diagnosis using artificial neural networks. Exp. Syst. Appl. 2010;37(12):7648-7655. doi: 10.1016/j.eswa.2010.04.078. DOI

https://www.who.int/emergencies/diseases/

Rodolfo M. Pereira, Diego Bertolini, Lucas O. Teixeira, Carlos N. Silla, Yandre M.G. Costa, COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios, Computer Methods and Programs in Biomedicine, 194, 2020. https://www.sciencedirect.com/science/article/pii/S0169260720309664 PubMed PMC

Chandra TB, Verma K, Singh BK, Jain D, Netam SS. Coronavirus disease (COVID-19) detection in chest X-ray images using majority voting based classifier ensemble. Exp. Syst. Appl. 2021;165:113909. doi: 10.1016/j.eswa.2020.113909. PubMed DOI PMC

Abbas A, Abdelsamea MM, Gaber MM. Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Appl. Intell. 2021;51(2):854. doi: 10.1007/s10489-020-01829-7. PubMed DOI PMC

Elzeki OM, Shams M, Sarhan S, Elfattah MA, Hassanien AE. COVID-19: a new deep learning computer-aided model for classification. PeerJ Comput. Sci. 2021 doi: 10.7717/peerj-cs.358. PubMed DOI PMC

Nour M, Cömert Z, Polat K. A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization. Appl. Soft Comput. 2020;97(Part A):106580. doi: 10.1016/j.asoc.2020.106580. PubMed DOI PMC

Rahaman MM, Li C, Yao Y, Kulwa F, Rahman MA, Wang Q, Qi S, Kong F, Zhu X, Zhao X. Identification of COVID-19 samples from chest X-ray images using deep learning comparison of transfer learning approaches. J. X-ray Sci. Technol. 2020;28(5):821. doi: 10.3233/XST-200715. PubMed DOI PMC

Sharma A, Rani S, Gupta D. Artificial intelligence-based classification of chest X-ray images into COVID-19 and other infectious diseases. Int. J. Biomed. Imaging. 2020 doi: 10.1155/2020/8889023. PubMed DOI PMC

Ozturk T, Talo M, Yildirim EA, Baloglu UB, Ozal Yildirim U, Acharya R. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 2020;121:103792. doi: 10.1016/j.compbiomed.2020.103792. PubMed DOI PMC

Ezzat D, Hassanien AE, Ella HA. An optimized deep learning architecture for diagnosing COVID-19 disease based on gravitational search optimization. Appl. Soft Comput. 2021;98:106742. doi: 10.1016/j.asoc.2020.106742. PubMed DOI PMC

Nguyen, H.P., Ribeiro, B. (2019). Advanced Capsule Networks via Context Awareness. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial neural networks and machine learning—ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in Computer Science, 11727. Springer, Cham. 10.1007/978-3-030-30487-4_14

A. D. Kumar, R.Karthika and Latha Parameswaran, Novel learning model for traffic sign detection using capsule networks, International Journal of Pure and Applied Mathematics 118 (20) 4543, 2018, https://ui.adsabs.harvard.edu/link_gateway/2018arXiv180504424D/arxiv:1805.04424

Feurer A, Hutter F. Hyperparameter optimization. Cham: Springer; 2019. Automated machine learning methods systems challenges.

Patrick MK, Adekoya AF, et al. CapsuleNetworks—a survey. J. King Saud Univ. Inf. Sci. 2019 doi: 10.1016/j.jksuci.2019.09.014(2019). DOI

Zhao JLD, Guo-Xiong Z. Lung diseases identification method based on capsule neural network. Evolut. Intell. 2020 doi: 10.1007/s12065-020-00408-6. DOI

Sun K, Yuan L, Xu H, Wen X. Deep Tensor Capsule Network. IEEE Access. 2020;8:96920–96933. doi: 10.1109/ACCESS.2020.2996282. DOI

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition," 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings. 2015

C. E. Rasmussen and C. K. I. Williams, "Gaussian processes for machine learning,"http://www.GaussianProcess.org/gpml. MIT Press. (2006)

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002;16:321–357. doi: 10.1613/jair.953. DOI

Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, Vol. 86(11), 2278. 10.1109/5.726791, 1998

Kaya A, Keceli AS, Catal C, Yalic HY, Temucin H, Tekinerdogan B. Analysis of transfer learning for deep neural network based plant classification models. Comput. Electron. Agric. 2019 doi: 10.1016/j.compag.2019.01.041. DOI

Hinton GE, Krizhevsky A, Wang SD. Transforming auto-encoders. In: Honkela T, Duch W, Girolami M, Kaski S, editors. "Artificial neural networks and machine learning—ICANN 2011. Berlin Heidelberg, Berlin, Heidelberg: Springer; 2011. pp. 44–51.

Ilievski, I.; Akhtar, T.; Feng, J.; Shoemaker, C. Efficient hyperparameter optimization for deep learning algorithms using deterministic RBF surrogates. AAAI17, 31, 2017

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database

Y.Xiong, G.Su , S. Ye, Y. Sun, Y. Sun (2019) Deeper Capsule Network For Complex Data." IJCNN 2019. International joint conference on neural networks. Budapest, Hungary. 1419. 10.1109/ijcnn.2019.8852020

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...