Different classes of genomic inserts contribute to human antibody diversity
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36037353
PubMed Central
PMC9457163
DOI
10.1073/pnas.2205470119
Knihovny.cz E-zdroje
- Klíčová slova
- B cell diversity, antibody repertoire, insert,
- MeSH
- B-lymfocyty * imunologie MeSH
- CD antigeny imunologie MeSH
- genomika MeSH
- geny pro imunoglobuliny * MeSH
- imunoglobulinový receptor leukocytů B1 imunologie MeSH
- inzerční mutageneze MeSH
- lehké řetězce imunoglobulinů genetika MeSH
- lidé MeSH
- Plasmodium falciparum MeSH
- protilátky protozoální genetika MeSH
- receptory antigenů T-buněk genetika MeSH
- receptory imunologické imunologie MeSH
- rozmanitost protilátek * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CD antigeny MeSH
- imunoglobulinový receptor leukocytů B1 MeSH
- lehké řetězce imunoglobulinů MeSH
- leukocyte-associated immunoglobulin-like receptor 1 MeSH Prohlížeč
- LILRB1 protein, human MeSH Prohlížeč
- protilátky protozoální MeSH
- receptory antigenů T-buněk MeSH
- receptory imunologické MeSH
Recombination of antibody genes in B cells can involve distant genomic loci and contribute a foreign antigen-binding element to form hybrid antibodies with broad reactivity for Plasmodium falciparum. So far, antibodies containing the extracellular domain of the LAIR1 and LILRB1 receptors represent unique examples of cross-chromosomal antibody diversification. Here, we devise a technique to profile non-VDJ elements from distant genes in antibody transcripts. Independent of the preexposure of donors to malaria parasites, non-VDJ inserts were detected in 80% of individuals at frequencies of 1 in 104 to 105 B cells. We detected insertions in heavy, but not in light chain or T cell receptor transcripts. We classify the insertions into four types depending on the insert origin and destination: 1) mitochondrial and 2) nuclear DNA inserts integrated at VDJ junctions; 3) inserts originating from telomere proximal genes; and 4) fragile sites incorporated between J-to-constant junctions. The latter class of inserts was exclusively found in memory and in in vitro activated B cells, while all other classes were already detected in naïve B cells. More than 10% of inserts preserved the reading frame, including transcripts with signs of antigen-driven affinity maturation. Collectively, our study unravels a mechanism of antibody diversification that is layered on the classical V(D)J and switch recombination.
Berlin Institute of Health at Charité 10117 Berlin Germany
Central European Institute of Technology Masaryk University 601 77 Brno Czech Republic
Department of Biology Chemistry and Pharmacy Free University of Berlin 14195 Berlin Germany
Max Delbrück Center for Molecular Medicine in the Helmholtz Association 13125 Berlin Germany
Zobrazit více v PubMed
Jung D., Giallourakis C., Mostoslavsky R., Alt F. W., Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu. Rev. Immunol. 24, 541–570 (2006). PubMed
Odegard V. H., Schatz D. G., Targeting of somatic hypermutation. Nat. Rev. Immunol. 6, 573–583 (2006). PubMed
Muramatsu M., et al. , Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000). PubMed
Tan J., et al. , A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. Nature 529, 105–109 (2016). PubMed PMC
Pieper K., et al. , Public antibodies to malaria antigens generated by two LAIR1 insertion modalities. Nature 548, 597–601 (2017). PubMed PMC
Chen Y., et al. , Structural basis of malaria RIFIN binding by LILRB1-containing antibodies. Nature 592, 639–643 (2021). PubMed PMC
Baar J., Shulman M. J., The Ig heavy chain switch region is a hotspot for insertion of transfected DNA. J. Immunol. 155, 1911–1920 (1995). PubMed
Gabrea A., Bergsagel P. L., Chesi M., Shou Y., Kuehl W. M., Insertion of excised IgH switch sequences causes overexpression of cyclin D1 in a myeloma tumor cell. Mol. Cell 3, 119–123 (1999). PubMed
Agrawal A., Eastman Q. M., Schatz D. G., Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998). PubMed
Hiom K., Melek M., Gellert M., DNA transposition by the RAG1 and RAG2 proteins: A possible source of oncogenic translocations. Cell 94, 463–470 (1998). PubMed
Melek M., Gellert M., RAG1/2-mediated resolution of transposition intermediates: Two pathways and possible consequences. Cell 101, 625–633 (2000). PubMed
Lee G. S., Neiditch M. B., Sinden R. R., Roth D. B., Targeted transposition by the V(D)J recombinase. Mol. Cell. Biol. 22, 2068–2077 (2002). PubMed PMC
Neiditch M. B., Lee G. S., Huye L. E., Brandt V. L., Roth D. B., The V(D)J recombinase efficiently cleaves and transposes signal joints. Mol. Cell 9, 871–878 (2002). PubMed
Tsai C. L., Chatterji M., Schatz D. G., DNA mismatches and GC-rich motifs target transposition by the RAG1/RAG2 transposase. Nucleic Acids Res. 31, 6180–6190 (2003). PubMed PMC
Reddy Y. V. R., Perkins E. J., Ramsden D. A., Genomic instability due to V(D)J recombination-associated transposition. Genes Dev. 20, 1575–1582 (2006). PubMed PMC
Vaandrager J. W., Schuuring E., Philippo K., Kluin P. M., V(D)J recombinase-mediated transposition of the BCL2 gene to the IGH locus in follicular lymphoma. Blood 96, 1947–1952 (2000). PubMed
Sonoki T., Iwanaga E., Mitsuya H., Asou N., Insertion of microRNA-125b-1, a human homologue of lin-4, into a rearranged immunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia. Leukemia 19, 2009–2010 (2005). PubMed
Yu Y., et al. , Dna2 nuclease deficiency results in large and complex DNA insertions at chromosomal breaks. Nature 564, 287–290 (2018). PubMed PMC
Onozawa M., Aplan P. D., Templated sequence insertion polymorphisms in the human genome. Front Chem. 4, 43 (2016). PubMed PMC
Onozawa M., et al. , Repair of DNA double-strand breaks by templated nucleotide sequence insertions derived from distant regions of the genome. Proc. Natl. Acad. Sci. U.S.A. 111, 7729–7734 (2014). PubMed PMC
Rommel P. C., Oliveira T. Y., Nussenzweig M. C., Robbiani D. F., RAG1/2 induces genomic insertions by mobilizing DNA into RAG1/2-independent breaks. J. Exp. Med. 214, 815–831 (2017). PubMed PMC
Alt F. W., Zhang Y., Meng F.-L., Guo C., Schwer B., Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152, 417–429 (2013). PubMed PMC
Nussenzweig A., Nussenzweig M. C., Origin of chromosomal translocations in lymphoid cancer. Cell 141, 27–38 (2010). PubMed PMC
Geser A., Brubaker G., Draper C. C., Effect of a malaria suppression program on the incidence of African Burkitt’s lymphoma. Am. J. Epidemiol. 129, 740–752 (1989). PubMed
Moormann A. M., et al. , Exposure to holoendemic malaria results in elevated Epstein-Barr virus loads in children. J. Infect. Dis. 191, 1233–1238 (2005). PubMed
Robbiani D. F., et al. , Plasmodium infection promotes genomic instability and AID-dependent B cell lymphoma. Cell 162, 727–737 (2015). PubMed PMC
Elenich L. A., Dunnick W. A., Sequence at insertion site of E.Tn retrotransposon into an immunoglobulin switch region suggests a role for switch recombinase. Nucleic Acids Res. 19, 396 (1991). PubMed PMC
Lukyanov K. A., Launer G. A., Tarabykin V. S., Zaraisky A. G., Lukyanov S. A., Inverted terminal repeats permit the average length of amplified DNA fragments to be regulated during preparation of cDNA libraries by polymerase chain reaction. Anal. Biochem. 229, 198–202 (1995). PubMed
Monaco G., et al. , RNA-seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep. 26, 1627–1640.e7 (2019). PubMed PMC
Aguilera A., The connection between transcription and genomic instability. EMBO J. 21, 195–201 (2002). PubMed PMC
Chiarle R., et al. , Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147, 107–119 (2011). PubMed PMC
Aguilera A., García-Muse T., R loops: From transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012). PubMed
Sanz L. A., et al. , Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol. Cell 63, 167–178 (2016). PubMed PMC
Hansen R. S., et al. , A variable domain of delayed replication in FRAXA fragile X chromosomes: X inactivation-like spread of late replication. Proc. Natl. Acad. Sci. U.S.A. 94, 4587–4592 (1997). PubMed PMC
Le Beau M. M., et al. , Replication of a common fragile site, FRA3B, occurs late in S phase and is delayed further upon induction: Implications for the mechanism of fragile site induction. Hum. Mol. Genet. 7, 755–761 (1998). PubMed
Barlow J. H., et al. , Identification of early replicating fragile sites that contribute to genome instability. Cell 152, 620–632 (2013). PubMed PMC
Zhang H., Freudenreich C. H., An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol. Cell 27, 367–379 (2007). PubMed PMC
Dillon L. W., Burrow A. A., Wang Y.-H., DNA instability at chromosomal fragile sites in cancer. Curr. Genomics 11, 326–337 (2010). PubMed PMC
Fungtammasan A., Walsh E., Chiaromonte F., Eckert K. A., Makova K. D., A genome-wide analysis of common fragile sites: What features determine chromosomal instability in the human genome? Genome Res. 22, 993–1005 (2012). PubMed PMC
Payer L. M., Burns K. H., Transposable elements in human genetic disease. Nat. Rev. Genet. 20, 760–772 (2019). PubMed
Yamane A., et al. , Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat. Immunol. 12, 62–69 (2011). PubMed PMC
Meng F.-L., et al. , Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability. Cell 159, 1538–1548 (2014). PubMed PMC
Klein I. A., et al. , Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147, 95–106 (2011). PubMed PMC
Qian J., et al. , B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 159, 1524–1537 (2014). PubMed PMC
Staszewski O., et al. , Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells. Mol. Cell 41, 232–242 (2011). PubMed PMC
Khair L., Baker R. E., Linehan E. K., Schrader C. E., Stavnezer J., Nbs1 ChIP-Seq identifies off-target DNA double-strand breaks induced by AID in activated splenic B cells. PLoS Genet. 11, e1005438 (2015). PubMed PMC
Álvarez-Prado Á. F., et al. , A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets. J. Exp. Med. 215, 761–771 (2018). PubMed PMC
Mijušković M., et al. , Off-target V(D)J recombination drives lymphomagenesis and is escalated by loss of the Rag2 C terminus. Cell Rep. 12, 1842–1852 (2015). PubMed PMC
Boyd S. D., Joshi S. A., High-throughput DNA sequencing analysis of antibody repertoires. Microbiol. Spectr. 2, 10.1128/microbiolspec.AID-0017-2014 (2014). PubMed DOI
Morbach H., Eichhorn E. M., Liese J. G., Girschick H. J., Reference values for B cell subpopulations from infancy to adulthood. Clin. Exp. Immunol. 162, 271–279 (2010). PubMed PMC
Helmrich A., Ballarino M., Tora L., Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44, 966–977 (2011). PubMed
Wilson T. E., et al. , Large transcription units unify copy number variants and common fragile sites arising under replication stress. Genome Res. 25, 189–200 (2015). PubMed PMC
Coquel F., et al. , SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 557, 57–61 (2018). PubMed
Willett-Brozick J. E., Savul S. A., Richey L. E., Baysal B. E., Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation. Hum. Genet. 109, 216–223 (2001). PubMed
Singh K. K., Choudhury A. R., Tiwari H. K., Numtogenesis as a mechanism for development of cancer. Semin. Cancer Biol. 47, 101–109 (2017). PubMed PMC
Onozawa M., Goldberg L., Aplan P. D., Landscape of insertion polymorphisms in the human genome. Genome Biol. Evol. 7, 960–968 (2015). PubMed PMC
Cantaert T., et al. , Activation-induced cytidine deaminase expression in human B cell precursors is essential for central B cell tolerance. Immunity 43, 884–895 (2015). PubMed PMC
Posey J. E., Pytlos M. J., Sinden R. R., Roth D. B., Target DNA structure plays a critical role in RAG transposition. PLoS Biol. 4, e350 (2006). PubMed PMC
Hu J., et al. , Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat. Protoc. 11, 853–871 (2016). PubMed PMC
ten Boekel E., Melchers F., Rolink A. G., Precursor B cells showing H chain allelic inclusion display allelic exclusion at the level of pre-B cell receptor surface expression. Immunity 8, 199–207 (1998). PubMed
Nussenzweig M. C., et al. , Allelic exclusion in transgenic mice that express the membrane form of immunoglobulin μ. Science 236, 816–819 (1987). PubMed
Reth M., Petrac E., Wiese P., Lobel L., Alt F. W., Activation of V kappa gene rearrangement in pre-B cells follows the expression of membrane-bound immunoglobulin heavy chains. EMBO J. 6, 3299–3305 (1987). PubMed PMC
Kitamura D., Rajewsky K., Targeted disruption of mu chain membrane exon causes loss of heavy-chain allelic exclusion. Nature 356, 154–156 (1992). PubMed
Manz J., Denis K., Witte O., Brinster R., Storb U., Feedback inhibition of immunoglobulin gene rearrangement by membrane mu, but not by secreted mu heavy chains. J. Exp. Med. 168, 1363–1381 (1988). PubMed PMC
Gold M. R., Reth M. G., Antigen receptor function in the context of the nanoscale organization of the B cell membrane. Annu. Rev. Immunol. 37, 97–123 (2019). PubMed
Lazar I., Zwecker-Lazar I., Lazar R., Gel Analyzer 2010a: Freeware 1D gel electrophoresis image analysis software (2010). https://www.scienceopen.com/document?vid=416d30b4-53d9-4565-a37d-e9d8709afd93. Accessed 22 August 2022.
Li H., Durbin R., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed PMC
Quinlan A. R., Hall I. M., BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). PubMed PMC
Harrow J., et al. , GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012). PubMed PMC
Neph S., et al. , BEDOPS: High-performance genomic feature operations. Bioinformatics 28, 1919–1920 (2012). PubMed PMC
Haas B. J., et al. , De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013). PubMed PMC
Lefranc M.-P., IMGT, the international ImMunoGeneTics information system: A standardized approach for immunogenetics and immunoinformatics. Immunome Res. 1, 3 (2005). PubMed PMC
R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019)
Okonechnikov K., Golosova O., Fursov M.; UGENE team, Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 28, 1166–1167 (2012). PubMed
Zhang J., Kobert K., Flouri T., Stamatakis A., PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014). PubMed PMC
Bolger A. M., Lohse M., Usadel B., Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). PubMed PMC
Ye J., Ma N., Madden T. L., Ostell J. M., IgBLAST: An immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34–W40 (2013). PubMed PMC
Camacho C., et al. , BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009). PubMed PMC
Desmet F.-O., et al. , Human Splicing Finder: An online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 37, e67 (2009). PubMed PMC
Cowell L. G., Davila M., Kepler T. B., Kelsoe G., Identification and utilization of arbitrary correlations in models of recombination signal sequences. Genome Biol. 3, RESEARCH0072 (2002). PubMed PMC
Lebedin M., et al. ., Sequencing of non-VDJ insertions in human antibody transcripts. NCBI SRA. https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA638005. Accessed 22 August 2022.
Foglierini Perez M., vdjinsertIllumina, Pipeline and scripts to process PCR suppression products to find insert into V(D)J transcripts. Bitbucket. https://bitbucket.org/mathildefog/vdjinsertillumina/src/master/. Deposited 16 June 2020.
Foglierini Perez M., LAIR1vdjinsertIllumina, In-depth analysis of insert-containing antibody transcripts after running vdjinsertIllumina pipeline. Bitbucket. https://bitbucket.org/mathildefog/lair1vdjinsertillumina/src/master/. Deposited 16 June 2020.