Different classes of genomic inserts contribute to human antibody diversity

. 2022 Sep 06 ; 119 (36) : e2205470119. [epub] 20220829

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36037353

Recombination of antibody genes in B cells can involve distant genomic loci and contribute a foreign antigen-binding element to form hybrid antibodies with broad reactivity for Plasmodium falciparum. So far, antibodies containing the extracellular domain of the LAIR1 and LILRB1 receptors represent unique examples of cross-chromosomal antibody diversification. Here, we devise a technique to profile non-VDJ elements from distant genes in antibody transcripts. Independent of the preexposure of donors to malaria parasites, non-VDJ inserts were detected in 80% of individuals at frequencies of 1 in 104 to 105 B cells. We detected insertions in heavy, but not in light chain or T cell receptor transcripts. We classify the insertions into four types depending on the insert origin and destination: 1) mitochondrial and 2) nuclear DNA inserts integrated at VDJ junctions; 3) inserts originating from telomere proximal genes; and 4) fragile sites incorporated between J-to-constant junctions. The latter class of inserts was exclusively found in memory and in in vitro activated B cells, while all other classes were already detected in naïve B cells. More than 10% of inserts preserved the reading frame, including transcripts with signs of antigen-driven affinity maturation. Collectively, our study unravels a mechanism of antibody diversification that is layered on the classical V(D)J and switch recombination.

Zobrazit více v PubMed

Jung D., Giallourakis C., Mostoslavsky R., Alt F. W., Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu. Rev. Immunol. 24, 541–570 (2006). PubMed

Odegard V. H., Schatz D. G., Targeting of somatic hypermutation. Nat. Rev. Immunol. 6, 573–583 (2006). PubMed

Muramatsu M., et al. , Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000). PubMed

Tan J., et al. , A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. Nature 529, 105–109 (2016). PubMed PMC

Pieper K., et al. , Public antibodies to malaria antigens generated by two LAIR1 insertion modalities. Nature 548, 597–601 (2017). PubMed PMC

Chen Y., et al. , Structural basis of malaria RIFIN binding by LILRB1-containing antibodies. Nature 592, 639–643 (2021). PubMed PMC

Baar J., Shulman M. J., The Ig heavy chain switch region is a hotspot for insertion of transfected DNA. J. Immunol. 155, 1911–1920 (1995). PubMed

Gabrea A., Bergsagel P. L., Chesi M., Shou Y., Kuehl W. M., Insertion of excised IgH switch sequences causes overexpression of cyclin D1 in a myeloma tumor cell. Mol. Cell 3, 119–123 (1999). PubMed

Agrawal A., Eastman Q. M., Schatz D. G., Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998). PubMed

Hiom K., Melek M., Gellert M., DNA transposition by the RAG1 and RAG2 proteins: A possible source of oncogenic translocations. Cell 94, 463–470 (1998). PubMed

Melek M., Gellert M., RAG1/2-mediated resolution of transposition intermediates: Two pathways and possible consequences. Cell 101, 625–633 (2000). PubMed

Lee G. S., Neiditch M. B., Sinden R. R., Roth D. B., Targeted transposition by the V(D)J recombinase. Mol. Cell. Biol. 22, 2068–2077 (2002). PubMed PMC

Neiditch M. B., Lee G. S., Huye L. E., Brandt V. L., Roth D. B., The V(D)J recombinase efficiently cleaves and transposes signal joints. Mol. Cell 9, 871–878 (2002). PubMed

Tsai C. L., Chatterji M., Schatz D. G., DNA mismatches and GC-rich motifs target transposition by the RAG1/RAG2 transposase. Nucleic Acids Res. 31, 6180–6190 (2003). PubMed PMC

Reddy Y. V. R., Perkins E. J., Ramsden D. A., Genomic instability due to V(D)J recombination-associated transposition. Genes Dev. 20, 1575–1582 (2006). PubMed PMC

Vaandrager J. W., Schuuring E., Philippo K., Kluin P. M., V(D)J recombinase-mediated transposition of the BCL2 gene to the IGH locus in follicular lymphoma. Blood 96, 1947–1952 (2000). PubMed

Sonoki T., Iwanaga E., Mitsuya H., Asou N., Insertion of microRNA-125b-1, a human homologue of lin-4, into a rearranged immunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia. Leukemia 19, 2009–2010 (2005). PubMed

Yu Y., et al. , Dna2 nuclease deficiency results in large and complex DNA insertions at chromosomal breaks. Nature 564, 287–290 (2018). PubMed PMC

Onozawa M., Aplan P. D., Templated sequence insertion polymorphisms in the human genome. Front Chem. 4, 43 (2016). PubMed PMC

Onozawa M., et al. , Repair of DNA double-strand breaks by templated nucleotide sequence insertions derived from distant regions of the genome. Proc. Natl. Acad. Sci. U.S.A. 111, 7729–7734 (2014). PubMed PMC

Rommel P. C., Oliveira T. Y., Nussenzweig M. C., Robbiani D. F., RAG1/2 induces genomic insertions by mobilizing DNA into RAG1/2-independent breaks. J. Exp. Med. 214, 815–831 (2017). PubMed PMC

Alt F. W., Zhang Y., Meng F.-L., Guo C., Schwer B., Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152, 417–429 (2013). PubMed PMC

Nussenzweig A., Nussenzweig M. C., Origin of chromosomal translocations in lymphoid cancer. Cell 141, 27–38 (2010). PubMed PMC

Geser A., Brubaker G., Draper C. C., Effect of a malaria suppression program on the incidence of African Burkitt’s lymphoma. Am. J. Epidemiol. 129, 740–752 (1989). PubMed

Moormann A. M., et al. , Exposure to holoendemic malaria results in elevated Epstein-Barr virus loads in children. J. Infect. Dis. 191, 1233–1238 (2005). PubMed

Robbiani D. F., et al. , Plasmodium infection promotes genomic instability and AID-dependent B cell lymphoma. Cell 162, 727–737 (2015). PubMed PMC

Elenich L. A., Dunnick W. A., Sequence at insertion site of E.Tn retrotransposon into an immunoglobulin switch region suggests a role for switch recombinase. Nucleic Acids Res. 19, 396 (1991). PubMed PMC

Lukyanov K. A., Launer G. A., Tarabykin V. S., Zaraisky A. G., Lukyanov S. A., Inverted terminal repeats permit the average length of amplified DNA fragments to be regulated during preparation of cDNA libraries by polymerase chain reaction. Anal. Biochem. 229, 198–202 (1995). PubMed

Monaco G., et al. , RNA-seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep. 26, 1627–1640.e7 (2019). PubMed PMC

Aguilera A., The connection between transcription and genomic instability. EMBO J. 21, 195–201 (2002). PubMed PMC

Chiarle R., et al. , Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147, 107–119 (2011). PubMed PMC

Aguilera A., García-Muse T., R loops: From transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012). PubMed

Sanz L. A., et al. , Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol. Cell 63, 167–178 (2016). PubMed PMC

Hansen R. S., et al. , A variable domain of delayed replication in FRAXA fragile X chromosomes: X inactivation-like spread of late replication. Proc. Natl. Acad. Sci. U.S.A. 94, 4587–4592 (1997). PubMed PMC

Le Beau M. M., et al. , Replication of a common fragile site, FRA3B, occurs late in S phase and is delayed further upon induction: Implications for the mechanism of fragile site induction. Hum. Mol. Genet. 7, 755–761 (1998). PubMed

Barlow J. H., et al. , Identification of early replicating fragile sites that contribute to genome instability. Cell 152, 620–632 (2013). PubMed PMC

Zhang H., Freudenreich C. H., An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol. Cell 27, 367–379 (2007). PubMed PMC

Dillon L. W., Burrow A. A., Wang Y.-H., DNA instability at chromosomal fragile sites in cancer. Curr. Genomics 11, 326–337 (2010). PubMed PMC

Fungtammasan A., Walsh E., Chiaromonte F., Eckert K. A., Makova K. D., A genome-wide analysis of common fragile sites: What features determine chromosomal instability in the human genome? Genome Res. 22, 993–1005 (2012). PubMed PMC

Payer L. M., Burns K. H., Transposable elements in human genetic disease. Nat. Rev. Genet. 20, 760–772 (2019). PubMed

Yamane A., et al. , Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat. Immunol. 12, 62–69 (2011). PubMed PMC

Meng F.-L., et al. , Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability. Cell 159, 1538–1548 (2014). PubMed PMC

Klein I. A., et al. , Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147, 95–106 (2011). PubMed PMC

Qian J., et al. , B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 159, 1524–1537 (2014). PubMed PMC

Staszewski O., et al. , Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells. Mol. Cell 41, 232–242 (2011). PubMed PMC

Khair L., Baker R. E., Linehan E. K., Schrader C. E., Stavnezer J., Nbs1 ChIP-Seq identifies off-target DNA double-strand breaks induced by AID in activated splenic B cells. PLoS Genet. 11, e1005438 (2015). PubMed PMC

Álvarez-Prado Á. F., et al. , A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets. J. Exp. Med. 215, 761–771 (2018). PubMed PMC

Mijušković M., et al. , Off-target V(D)J recombination drives lymphomagenesis and is escalated by loss of the Rag2 C terminus. Cell Rep. 12, 1842–1852 (2015). PubMed PMC

Boyd S. D., Joshi S. A., High-throughput DNA sequencing analysis of antibody repertoires. Microbiol. Spectr. 2, 10.1128/microbiolspec.AID-0017-2014 (2014). PubMed DOI

Morbach H., Eichhorn E. M., Liese J. G., Girschick H. J., Reference values for B cell subpopulations from infancy to adulthood. Clin. Exp. Immunol. 162, 271–279 (2010). PubMed PMC

Helmrich A., Ballarino M., Tora L., Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44, 966–977 (2011). PubMed

Wilson T. E., et al. , Large transcription units unify copy number variants and common fragile sites arising under replication stress. Genome Res. 25, 189–200 (2015). PubMed PMC

Coquel F., et al. , SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 557, 57–61 (2018). PubMed

Willett-Brozick J. E., Savul S. A., Richey L. E., Baysal B. E., Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation. Hum. Genet. 109, 216–223 (2001). PubMed

Singh K. K., Choudhury A. R., Tiwari H. K., Numtogenesis as a mechanism for development of cancer. Semin. Cancer Biol. 47, 101–109 (2017). PubMed PMC

Onozawa M., Goldberg L., Aplan P. D., Landscape of insertion polymorphisms in the human genome. Genome Biol. Evol. 7, 960–968 (2015). PubMed PMC

Cantaert T., et al. , Activation-induced cytidine deaminase expression in human B cell precursors is essential for central B cell tolerance. Immunity 43, 884–895 (2015). PubMed PMC

Posey J. E., Pytlos M. J., Sinden R. R., Roth D. B., Target DNA structure plays a critical role in RAG transposition. PLoS Biol. 4, e350 (2006). PubMed PMC

Hu J., et al. , Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat. Protoc. 11, 853–871 (2016). PubMed PMC

ten Boekel E., Melchers F., Rolink A. G., Precursor B cells showing H chain allelic inclusion display allelic exclusion at the level of pre-B cell receptor surface expression. Immunity 8, 199–207 (1998). PubMed

Nussenzweig M. C., et al. , Allelic exclusion in transgenic mice that express the membrane form of immunoglobulin μ. Science 236, 816–819 (1987). PubMed

Reth M., Petrac E., Wiese P., Lobel L., Alt F. W., Activation of V kappa gene rearrangement in pre-B cells follows the expression of membrane-bound immunoglobulin heavy chains. EMBO J. 6, 3299–3305 (1987). PubMed PMC

Kitamura D., Rajewsky K., Targeted disruption of mu chain membrane exon causes loss of heavy-chain allelic exclusion. Nature 356, 154–156 (1992). PubMed

Manz J., Denis K., Witte O., Brinster R., Storb U., Feedback inhibition of immunoglobulin gene rearrangement by membrane mu, but not by secreted mu heavy chains. J. Exp. Med. 168, 1363–1381 (1988). PubMed PMC

Gold M. R., Reth M. G., Antigen receptor function in the context of the nanoscale organization of the B cell membrane. Annu. Rev. Immunol. 37, 97–123 (2019). PubMed

Lazar I., Zwecker-Lazar I., Lazar R., Gel Analyzer 2010a: Freeware 1D gel electrophoresis image analysis software (2010). https://www.scienceopen.com/document?vid=416d30b4-53d9-4565-a37d-e9d8709afd93. Accessed 22 August 2022.

Li H., Durbin R., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed PMC

Quinlan A. R., Hall I. M., BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). PubMed PMC

Harrow J., et al. , GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012). PubMed PMC

Neph S., et al. , BEDOPS: High-performance genomic feature operations. Bioinformatics 28, 1919–1920 (2012). PubMed PMC

Haas B. J., et al. , De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013). PubMed PMC

Lefranc M.-P., IMGT, the international ImMunoGeneTics information system: A standardized approach for immunogenetics and immunoinformatics. Immunome Res. 1, 3 (2005). PubMed PMC

R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019)

Okonechnikov K., Golosova O., Fursov M.; UGENE team, Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 28, 1166–1167 (2012). PubMed

Zhang J., Kobert K., Flouri T., Stamatakis A., PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014). PubMed PMC

Bolger A. M., Lohse M., Usadel B., Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). PubMed PMC

Ye J., Ma N., Madden T. L., Ostell J. M., IgBLAST: An immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34–W40 (2013). PubMed PMC

Camacho C., et al. , BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009). PubMed PMC

Desmet F.-O., et al. , Human Splicing Finder: An online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 37, e67 (2009). PubMed PMC

Cowell L. G., Davila M., Kepler T. B., Kelsoe G., Identification and utilization of arbitrary correlations in models of recombination signal sequences. Genome Biol. 3, RESEARCH0072 (2002). PubMed PMC

Lebedin M., et al. ., Sequencing of non-VDJ insertions in human antibody transcripts. NCBI SRA. https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA638005. Accessed 22 August 2022.

Foglierini Perez M., vdjinsertIllumina, Pipeline and scripts to process PCR suppression products to find insert into V(D)J transcripts. Bitbucket. https://bitbucket.org/mathildefog/vdjinsertillumina/src/master/. Deposited 16 June 2020.

Foglierini Perez M., LAIR1vdjinsertIllumina, In-depth analysis of insert-containing antibody transcripts after running vdjinsertIllumina pipeline. Bitbucket. https://bitbucket.org/mathildefog/lair1vdjinsertillumina/src/master/. Deposited 16 June 2020.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...