Highly Chemoselective Catalytic Photooxidations by Using Solvent as a Sacrificial Electron Acceptor

. 2022 Dec 01 ; 28 (67) : e202202487. [epub] 20221005

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36040862

Grantová podpora
19-09064S Grantová Agentura České Republiky
KO 1537/18-1 Deutsche Forschungsgemeinschaft
e-INFRA CZ LM2018140 MŠMT České Republiky (Ministry of Education, Youth and Sports of the Czech Republic)

Catalyst recovery is an integral part of photoredox catalysis. It is often solved by adding another component-a sacrificial agent-whose role is to convert the catalyst back into its original oxidation state. However, an additive may cause a side reaction thus decreasing the selectivity and overall efficiency. Herein, we present a novel approach towards chemoselective photooxidation reactions based on suitable solvent-acetonitrile acting simultaneously as an electron acceptor for catalyst recovery, and on anaerobic conditions. This is allowed by the unique properties of the catalyst, 7,8-dimethoxy-3-methyl-5-phenyl-5-deazaflavinium chloride existing in both strongly oxidizing and reducing forms, whose strength is increased by excitation with visible light. Usefulness of this system is demonstrated in chemoselective dehydrogenations of 4-methoxy- and 4-chlorobenzyl alcohols to aldehydes without over-oxidation to benzoic acids achieving yields up to 70 %. 4-Substituted 1-phenylethanols were oxidized to ketones with yields 80-100 % and, moreover, with yields 31-98 % in the presence of benzylic methyl group, diphenylmethane or thioanisole which are readily oxidized in the presence of oxygen but these were untouched with our system. Mechanistic studies based on UV-Vis spectro-electrochemistry, EPR and time-resolved spectroscopy measurements showed that the process involving an electron release from an excited deazaflavin radical to acetonitrile under formation of solvated electron is crucial for the catalyst recovery.

Zobrazit více v PubMed

I. P. Beletskaya, C. Nájera, M. Yus, Chem. Soc. Rev. 2020, 49, 7101-7166;

R. A. Shenvi, D. P. O'Malley, P. S. Baran, Acc. Chem. Res. 2009, 42, 530-541.

A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016, 116, 3328-3435;

M. Uyanik, K. Ishihara, Chem. Commun. 2009, 2086-2099.

S. Alvi, V. Jayant, R. Ali, ChemistrySelect 2022, 7, e202200704;

B. Yu, A.-H. Liu, L.-N. He, B. Li, Z.-F. Diao, Y.-N. Li, Green Chem. 2012, 14, 957-962.

L. D′Accolti, C. Annese, C. Fusco, Chem. Eur. J. 2019, 25, 12003-12017;

I. Triandafillidi, D. I. Tzaras, C. G. Kokotos, ChemCatChem 2018, 10, 2521-2535.

R. Yazaki, Chem. Pharm. Bull. 2021, 69, 516-525;

H. Sterckx, B. Morel, B. U. W. Maes, Angew. Chem. Int. Ed. 2019, 58, 7946-7970;

Angew. Chem. 2019, 131, 8028-8055;

M. N. Kopylovich, A. P. C. Ribeiro, E. C. B. A. Alegria, N. M. R. Martins, L. M. D. R. S. Martins, A. J. L. Pombeiro, in Adv. Organomet. Chem., Vol. 63 (Ed.: P. J. Pérez), Academic Press, 2015, pp. 91-174.

L. Marais, A. J. Swarts, Catalysts 2019, 9, 395;

in Catalytic Oxidation in Organic Synthesis, Georg Thieme Verlag, Stuttgart, 2018;

S. Hamada, T. Furuta, Y. Wada, T. Kawabata, Angew. Chem. Int. Ed. 2013, 52, 8093-8097;

Angew. Chem. 2013, 125, 8251-8255;

R. A. Sheldon, I. W. C. E. Arends, Adv. Synth. Catal. 2004, 346, 1051-1071.

J.-E. Bäckvall, Editor, Modern Oxidation Methods, 2nd Completely Revised, Wiley-VCH Verlag GmbH & Co. KGaA, 2010;

L. Melone, C. Punta, Beilstein J. Org. Chem. 2013, 9, 1296-1310;

L. De Luca, G. Giacomelli, A. Porcheddu, J. Org. Chem. 2001, 66, 7907-7909.

N. Holmberg-Douglas, D. A. Nicewicz, Chem. Rev. 2022, 122, 1925-2016;

Y. Lee, M. S. Kwon, Eur. J. Org. Chem. 2020, 2020, 6028-6043;

D. Petzold, M. Giedyk, A. Chatterjee, B. König, Eur. J. Org. Chem. 2020, 2020, 1193-1244;

I. K. Sideri, E. Voutyritsa, C. G. Kokotos, Org. Biomol. Chem. 2018, 16, 4596-4614.

W. Schilling, D. Riemer, Y. Zhang, N. Hatami, S. Das, ACS Catal. 2018, 8, 5425-5430;

H. Zhang, T. Guo, M. Wu, X. Huo, S. Tang, X. Wang, J. Liu, Tetrahedron Lett. 2021, 67, 152878;

S. Fukuzumi, K. Ohkubo, Chem. Sci. 2013, 4, 561-574;

F. Rusch, J.-C. Schober, M. Brasholz, ChemCatChem 2016, 8, 2881-2884;

N. F. Nikitas, D. I. Tzaras, I. Triandafillidi, C. G. Kokotos, Green Chem. 2020, 22, 471-477.

X. Zhang, K. P. Rakesh, L. Ravindar, H.-L. Qin, Green Chem. 2018, 20, 4790-4833.

C. L. Hill, Nature 1999, 401, 436-437;

A. B. Jones, J. Wang, A. T. Hamme II, W. Han, in Encyclopedia of Reagents for Organic Synthesis;

R. A. Sheldon, Chem. Commun. 2008, 3352-3365.

L. Xiong, J. Tang, Adv. Energy Mat. 2021, 11, 2003216.

L. Capaldo, D. Ravelli, Eur. J. Org. Chem. 2020, 2020, 2783-2806.

C. Gunanathan, D. Milstein, Science 2013, 341, 1229712;

Z. Chai, T.-T. Zeng, Q. Li, L.-Q. Lu, W.-J. Xiao, D. Xu, J. Am. Chem. Soc. 2016, 138, 10128-10131;

H. Fuse, H. Mitsunuma, M. Kanai, J. Am. Chem. Soc. 2020, 142, 4493-4499;

Z. Chai, Chem. Asian. J. 2021, 16, 460-473.

E. J. Horn, B. R. Rosen, Y. Chen, J. Tang, K. Chen, M. D. Eastgate, P. S. Baran, Nature 2016, 533, 77-81;

J. Liu, L. Lu, D. Wood, S. Lin, ACS Central Sci. 2020, 6, 1317-1340;

J. P. Barham, B. König, Angew. Chem. Int. Ed. 2020, 59, 11732-11747;

Angew. Chem. 2020, 132, 11828-11844;

L. Capaldo, L. L. Quadri, D. Ravelli, Angew. Chem. Int. Ed. 2019, 58, 17508-17510;

Angew. Chem. 2019, 131, 17670-17672.

K. Targos, O. P. Williams, Z. K. Wickens, J. Am. Chem. Soc. 2021, 143, 4125-4132.

E. Svobodová, R. Cibulka, in Flavin-Based Catalysis, 2021, pp. 265-291;

A. Rehpenn, A. Walter, G. Storch, Synthesis 2021, 53, 2583-2593;

J. B. Metternig, R. J. Mudd, G. R., in Photocatalysis in Organic Synthesis, 2019 ed. (Ed.: B. König), Georg Thieme Verlag, Stuttgart, 2019, pp. 391-404;

V. Srivastava, P. K. Singh, A. Srivastava, P. P. Singh, RSC Adv. 2021, 11, 14251-14259.

J. Immel, M. Chilamari, S. Bloom Chem. Sci. 2021, 12, 10083-10091;

A. H. Tolba, M. Krupička, J. Chudoba, R. Cibulka, Org. Lett. 2021, 23, 6825-6830;

T. Hartman, M. Reisnerová, J. Chudoba, E. Svobodová, N. Archipowa, R. J. Kutta, R. Cibulka, ChemPlusChem 2021, 86, 373-386;

A. H. Tolba, F. Vávra, J. Chudoba, R. Cibulka, Eur. J. Org. Chem. 2020, 2020, 1579-1585;

J. Gurruchaga-Pereda, V. Martínez-Martínez, E. Rezabal, X. Lopez, C. Garino, F. Mancin, A. L. Cortajarena, L. Salassa, ACS Catal. 2020, 10, 187-196;

H. Guo, H. Xia, X. Ma, K. Chen, C. Dang, J. Zhao, B. Dick, ACS Omega 2020, 5, 10586-10595;

L. M. Bouchet, A. A. Heredia, J. E. Argüello, L. C. Schmidt, Org. Lett. 2020, 22, 610-614.

A. Pokluda, Z. Anwar, V. Boguschová, I. Anusiewicz, P. Skurski, M. Sikorski, R. Cibulka, Adv. Synth. Catal. 2021, 363, 4371-4379;

J. Zelenka, R. Cibulka, J. Roithová, Angew. Chem. Int. Ed. 2019, 58, 15412-15420;

Angew. Chem. 2019, 131, 15558-15566.

A. Graml, T. Neveselý, R. Jan Kutta, R. Cibulka, B. König, Nat. Commun. 2020, 11, 3174;

T. Pavlovska, D. Král Lesný, E. Svobodová, I. Hoskovcová, N. Archipowa, R. J. Kutta, R. Cibulka, Chem. Eur. J. 2022, e202200768.

B. Cheng, B. König, in Flavin-Based Catalysis, 2021 (Cibulka R. and Fraaije M., Eds) pp. 245-264, .

D. S. Chung, S. H. Park, S.-G. Lee, H. Kim, Chem. Sci. 2021, 12, 5892-5897.

M. Uygur, J. H. Kuhlmann, M. C. Pérez-Aguilar, D. G. Piekarski, O. García Mancheño, Green Chem. 2021, 23, 3392-3399.

There are both flavin-based systems producing benzoic acids or their mixtures with aldehydes (ref. 17c, e or selectively aldehydes (see ref.24).

B. Mühldorf, R. Wolf, Chem. Commun. 2015, 51, 8425-8428;

C. Feldmeier, H. Bartling, K. Magerl, R. M. Gschwind, Angew. Chem. Int. Ed. 2015, 54, 1347-1351;

Angew. Chem. 2015, 127, 1363-1367.

T. Neveselý, E. Svobodová, J. Chudoba, M. Sikorski, R. Cibulka, Adv. Synth. Catal. 2016, 358, 1654-1663;

S. M. Bonesi, I. Manet, M. Freccero, M. Fagnoni, A. Albini, Chem. Eur. J. 2006, 12, 4844-4857;

E. Skolia, P. L. Gkizis, C. G. Kokotos, ChemPlusChem 2022, 87, e202200008;

E. Skolia, P. L. Gkizis, N. F. Nikitas, C. G. Kokotos, Green Chem. 2022, 24, 4108-4118.

M. Oliva, G. A. Coppola, E. V. Van der Eycken, U. K. Sharma, Adv. Synth. Catal. 2021, 363, 1810-1834.

U. Megerle, M. Wenninger, R.-J. Kutta, R. Lechner, B. König, B. Dick, E. Riedle, Phys. Chem. Chem. Phys. 2011, 13, 8869-8880.

ΔG is calculated from Rehm-Weller equation ΔG=Eox (substrate) − Ered (oxidant) −0.06; see ref.[30] for details.

A. N. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075-10166.

D. C. Grills, S. V. Lymar, Phys. Chem. B 2022, 126, 262-269;

S. C. Doan, B. J. Schwartz, J. Phys. Chem. B 2013, 117, 4216-4221;

I. P. Bell, M. A. Rodgers, H. D. Burrows, J. Chem. Soc., Faraday Trans. 1 1977, 73, 315-326.

M. Neumeier, D. Sampedro, M. Májek, V. A. d. l. P. O′Shea, A. J. v. Wangelin, R. Pérez-Ruiz, Chem. Eur. J. 2018, 24, 105-108.

I. Ghosh, T. Ghosh, J. L. Bardagi, B. König, Science 2014, 346, 725-728;

I. A. MacKenzie, L. Wang, N. P. R. Onuska, O. F. Williams, K. Begam, A. M. Moran, B. D. Dunietz, D. A. Nicewicz, Nature 2020, 580, 76-80.

C. Greening, F. H. Ahmed, A. E. Mohamed, B. M. Lee, G. Pandey, A. C. Warden, C. Scott, J. G. Oakeshott, M. C. Taylor, C. J. Jackson, Microbiol. Mol. Biol. Rev. 2016, 80, 451-493;

M. Goldberg, I. Pecht, H. E. A. Kramer, R. Traber, P. Hemmerich, Biochim. Biophys. Acta - General Subjects 1981, 673, 570-593.

Y.-T. Kao, C. Saxena, T.-F. He, L. Guo, L. Wang, A. Sancar, D. Zhong, J. Am. Chem. Soc. 2008, 130, 13132-13139;

A. Sancar, Chem. Rev. 2003, 103, 2203-2238.

X. Gao, J. R. Turek-Herman, Y. J. Choi, R. D. Cohen, T. K. Hyster, J Am. Chem. Soc. 2021, 143, 19643-19647;

R. Foja, A. Walter, C. Jandl, E. Thyrhaug, J. Hauer, G. Storch, J. Am. Chem. Soc. 2022, 144, 4721-4726.

M. Krejčik, M. Daněk, F. Hartl, J. Electroanal. Chem. Interfac. Electrochem. 1991, 317, 179-187.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...