Do different multi-segment foot models detect the same changes in kinematics when wearing foot orthoses?
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_FTK_2018_014
Univerzita Palackého v Olomouci
PubMed
36071489
PubMed Central
PMC9454165
DOI
10.1186/s13047-022-00574-z
PII: 10.1186/s13047-022-00574-z
Knihovny.cz E-zdroje
- Klíčová slova
- Biomechanical response, Foot orthoses, Multi-segment foot models, Oxford Foot Model,
- MeSH
- biomechanika fyziologie MeSH
- chůze (způsob) fyziologie MeSH
- chůze fyziologie MeSH
- lidé MeSH
- noha (od hlezna dolů) fyziologie MeSH
- ortézy nohy (od hlezna dolů) * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Different multi-segment foot models have been used to explore the effect of foot orthoses. Previous studies have compared the kinematic output of different multi-segment foot models, however, no study has explored if different multi-segment foot models detect similar kinematic changes when wearing a foot orthoses. The aim of this study was to compare the ability of two different multi-segment foot models to detect kinematic changes at the hindfoot and forefoot during the single and double support phases of gait when wearing a foot orthosis. METHODS: Foot kinematics were collected during walking from a sample of 32 individuals with and without a foot orthosis with a medial heel bar using an eight-camera motion capture system. The Oxford Foot Model (OFM) and a multi-segment foot model using the Calibrated Anatomical System Technique (CAST) were applied simultaneously. Vector field statistical analysis was used to explore the kinematic effects of a medial heel bar using the two models, and the ability of the models to detect any changes in kinematics was compared. RESULTS: For the hindfoot, both models showed very good agreement of the effect of the foot orthosis across all three anatomical planes during the single and double support phases. However, for the forefoot, the level of agreement between the models varied with both models showing good agreement of the effect in the coronal plane but poorer agreement in the transverse and sagittal planes. CONCLUSIONS: This study showed that while consistency exists across both models for the hindfoot and forefoot in the coronal plane, the forefoot in the transverse and sagittal planes showed inconsistent responses to the foot orthoses. This should be considered when interpreting the efficacy of different interventions which aim to change foot biomechanics.
Allied Health Research Unit University of Central Lancashire Preston PR1 2HE UK
Faculty of Physical Culture Palacký University Olomouc třída Míru 117 Olomouc 77147 Czech Republic
Zobrazit více v PubMed
Leardini A, Caravaggi P, Theologis T, Stebbins J. Multi-segment foot models and their use in clinical populations. Gait Posture. 2019;69:50–59. doi: 10.1016/j.gaitpost.2019.01.022. PubMed DOI
Nawoczenski DA, Ketz J, Baumhauer JF. Dynamic kinematic and plantar pressure changes following cheilectomy for hallux rigidus: a mid-term followup. Foot Ankle Int. 2008;29:265–272. doi: 10.3113/FAI.2008.0265. PubMed DOI
Canseco K, Long J, Smedberg T, Tarima S, Marks RM, Harris GF. Multisegmental foot and ankle motion analysis after hallux valgus surgery. Foot Ankle Int. 2012;33:141–147. doi: 10.3113/FAI.2012.0141. PubMed DOI PMC
Desmyttere G, Leteneur S, Hajizadeh M, Bleau J, Begon M. Effect of 3D printed foot orthoses stiffness and design on foot kinematics and plantar pressures in healthy people. Gait Posture. 2020;81:247–253. doi: 10.1016/j.gaitpost.2020.07.146. PubMed DOI
Klein T, Lastovicka O, Janura M, Svoboda Z, Chapman GJ, Richards J. The immediate effects of sensorimotor foot orthoses on foot kinematics in healthy adults. Gait Posture. 2021;84:93–101. doi: 10.1016/j.gaitpost.2020.11.022. PubMed DOI
Carson MC, Harrington ME, Thompson N, O’Connor JJ, Theologis TN. Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis. J Biomech. 2001;34:1299–1307. doi: 10.1016/S0021-9290(01)00101-4. PubMed DOI
Stebbins J, Harrington M, Thompson N, Zavatsky A, Theologis T. Repeatability of a model for measuring multi-segment foot kinematics in children. Gait Posture. 2006;23:401–410. doi: 10.1016/j.gaitpost.2005.03.002. PubMed DOI
Curtis DJ, Bencke J, Stebbins JA, Stansfield B. Intra-rater repeatability of the Oxford foot model in healthy children in different stages of the foot roll over process during gait. Gait Posture. 2009;30:118–121. doi: 10.1016/j.gaitpost.2009.02.013. PubMed DOI
Wright CJ, Arnold BL, Coffey TG, Pidcoe PE. Repeatability of the modified Oxford foot model during gait in healthy adults. Gait Posture. 2011;33:108–12. doi: 10.1016/j.gaitpost.2010.10.084. PubMed DOI
de Vos J van HS, Verbruggen JPAM WP. Repeatability of the Oxford Foot Model for kinematic gait analysis of the foot and ankle. Clin Res Foot Ankle. 2015;03:27–9. 10.4172/2329-910X.1000171
Levinger P, Murley GS, Barton CJ, Cotchett MP, McSweeney SR, Menz HB. A comparison of foot kinematics in people with normal- and flat-arched feet using the Oxford Foot Model. Gait Posture. 2010;32:519–23. doi: 10.1016/j.gaitpost.2010.07.013. PubMed DOI
Barton CJ, Levinger P, Webster KE, Menz HB. Walking kinematics in individuals with patellofemoral pain syndrome: a case–control study. Gait Posture. 2011;33:286–91. doi: 10.1016/j.gaitpost.2010.11.022. PubMed DOI
Milner CE, Brindle RA. Reliability and minimal detectable difference in multisegment foot kinematics during shod walking and running. Gait Posture. 2016;43:192–7. doi: 10.1016/j.gaitpost.2015.09.022. PubMed DOI
Balsdon MER, Dombroski CE. Reliability of a multi-segment foot model in a neutral cushioning shoe during treadmill walking. J Foot Ankle Res. 2018;11:60. doi: 10.1186/s13047-018-0301-2. PubMed DOI PMC
Halstead J, Keenan AM, Chapman GJ, Redmond AC. The feasibility of a modified shoe for multi-segment foot motion analysis: a preliminary study. J Foot Ankle Res. 2016;9:7. doi: 10.1186/s13047-016-0138-5. PubMed DOI PMC
Halstead J, Chapman GJ, Gray JC, Grainger AJ, Brown S, Wilkins RA, et al. Foot orthoses in the treatment of symptomatic midfoot osteoarthritis using clinical and biomechanical outcomes: a randomised feasibility study. Clin Rheumatol. 2016;35:987–996. doi: 10.1007/s10067-015-2946-6. PubMed DOI PMC
Paterson KL, Hinman RS, Metcalf BR, Bennell KL, Wrigley TV. Plug-in-Gait calculation of the knee adduction moment in people with knee osteoarthritis during shod walking: comparison of two different foot marker models. J Foot Ankle Res. 2017;10:1–9. doi: 10.1186/s13047-017-0187-4. PubMed DOI PMC
Cappozzo A, Catani F, Della Croce U, Leardini A. Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech. 1995;10:171–178. doi: 10.1016/0268-0033(95)91394-T. PubMed DOI
Mager F, Richards J, Hennies M, Dötzel E, Chohan A, Mbuli A, et al. Determination of ankle and metatarsophalangeal stiffness during walking and jogging. J Appl Biomech. 2018;34:448–453. doi: 10.1123/jab.2017-0265. PubMed DOI
Schallig W, van den Noort JC, McCahill J, Stebbins J, Leardini A, Maas M, et al. Comparing the kinematic output of the Oxford and Rizzoli Foot Models during normal gait and voluntary pathological gait in healthy adults. Gait Posture. 2020;82:126–32. doi: 10.1016/j.gaitpost.2020.08.126. PubMed DOI
Yoo HJ, Park HS, Lee D-O, Kim SH, Park GY, Cho T-J, et al. Comparison of the kinematics, repeatability, and reproducibility of five different multi-segment foot models. J Foot Ankle Res. 2022;15:1. doi: 10.1186/s13047-021-00508-1. PubMed DOI PMC
Teixeira BG, Araújo VL, Santos TRT, Magalhães FA, Resende RA, Schallig W, et al. Comparison between the Rizzoli and Oxford foot models with independent and clustered tracking markers. Gait Posture. 2022;91:48–51. doi: 10.1016/j.gaitpost.2021.10.001. PubMed DOI
Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105:136–144. doi: 10.1115/1.3138397. PubMed DOI
Pataky TC, Vanrenterghem J, Robinson MA. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis. J Biomech. 2015;48:1277–85. doi: 10.1016/j.jbiomech.2015.02.051. PubMed DOI
Ferrari A, Benedetti MG, Pavan E, Frigo C, Bettinelli D, Rabuffetti M, et al. Quantitative comparison of five current protocols in gait analysis. Gait Posture. 2008;28:207–216. doi: 10.1016/j.gaitpost.2007.11.009. PubMed DOI
Laštovička O, Klein T, Abrantes J, Janura M. Immediate effect of individual bars of insoles and their combination on gait parameters in asymptomatic healthy adults. Somatosens Mot Res. 2020;37:125–131. doi: 10.1080/08990220.2020.1753686. PubMed DOI
Bonifácio D, Richards J, Selfe J, Curran S, Trede R. Influence and benefits of foot orthoses on kinematics, kinetics and muscle activation during step descent task. Gait Posture. 2018;65:106–111. doi: 10.1016/j.gaitpost.2018.07.041. PubMed DOI
Liu A, Nester CJ, Jones RK, Lundgren P, Lundberg A, Arndt A, et al. Effect of an antipronation foot orthosis on ankle and subtalar kinematics. Med Sci Sport Exerc. 2012;44:2384–2391. doi: 10.1249/MSS.0b013e318265df1d. PubMed DOI
Telfer S, Abbott M, Steultjens MPM, Woodburn J. Dose–response effects of customised foot orthoses on lower limb kinematics and kinetics in pronated foot type. J Biomech Elsevier. 2013;46:1489–1495. doi: 10.1016/j.jbiomech.2013.03.036. PubMed DOI
Chapman GJ, Parkes MJ, Forsythe L, Felson DT, Jones RK. Ankle motion influences the external knee adduction moment and may predict who will respond to lateral wedge insoles?: an ancillary analysis from the SILK trial. Osteoarthr Cartil. 2015;23:1316–1322. doi: 10.1016/j.joca.2015.02.164. PubMed DOI PMC
Kim Y, Richards J, Lidtke RH, Trede R. Characteristics of clinical measurements between biomechanical responders and non-responders to a shoe designed for knee osteoarthritis. Gait Posture. 2018;59:23–27. doi: 10.1016/j.gaitpost.2017.09.038. PubMed DOI