Validation of the Social Media Disorder Scale using network analysis in a large representative sample of Czech adolescents

. 2022 ; 10 () : 907522. [epub] 20220822

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36072384

BACKGROUND: The importance of studying the excessive use of social media in adolescents is increasing and so is the need for in-depth evaluations of the psychometric properties of the measurement tools. This study investigated the properties of the Social Media Disorder Scale (SMDS) in a large representative sample of Czech adolescents. METHODS: We analyzed the representative sample of 13,377 Czech adolescents (50.9% boys), 11-16 years old, who participated in the Health Behavior in School-aged Children (HBSC) survey (2017-18), using confirmatory factor analysis (CFA) and network models. Furthermore, we evaluated the measurement invariance and constructed the validity of the SMDS. RESULTS: We found support for a single dominant factor but not for strict unidimensionality. Several residual correlations were identified. The strongest were for: problems-conflicts-deceptions; persistence-escape; and preoccupation-tolerance-withdrawal. Girls, particularly 13- and 15-year-olds, scored higher than boys in the same age group, and 13- and 15-year-olds achieved higher scores than 11-year-olds, although some items were not invariant between the groups. The SMDS was positively related to other online activities, screen time, and falling asleep late, but negatively related to well-being and mental health. DISCUSSION AND CONCLUSIONS: The SMDS showed solid psychometric properties and construct validity. However, small violations of measurement invariance were detected. Furthermore, the network analysis showed important residual relationships between the items.

Zobrazit více v PubMed

Allen KA, Ryan T, Gray DL, McInerney DM, Waters L. Social media use and social connectedness in adolescents: the positives and the potential pitfalls Educ Dev Psychol. (2014) 31:18–31. 10.1017/edp.2014.2 DOI

Keles B, McCrae N, Grealish A. A systematic review: the influence of social media on depression, anxiety and psychological distress in adolescents. Int J Adolesc Youth. (2020) 25:79–93. 10.1080/02673843.2019.1590851 DOI

Müller KW, Dreier M, Beutel ME, Duven E, Giralt S, Wölfling K. A hidden type of internet addiction? Intense and addictive use of social networking sites in adolescents. Comput Hum Behav. (2016) 55:172–7. 10.1016/j.chb.2015.09.007 DOI

Kuss DJ, Griffiths MD. Online social networking and addiction—a review of the psychological literature. Int J Environ Res Public Health. (2011) 8:3528–52. 10.3390/ijerph8093528 PubMed DOI PMC

American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders (DSM-5). 5th ed. Washington, DC: American Psychiatric Association; (2013).

World Health Organization . International Statistical Classification of Diseases and Related Health Problems. 11th ed. Geneva: World Health Organization; (2019).

Valkenburg PM, Meier A, Beyens I. Social media use and its impact on adolescent mental health: an umbrella review of the evidence. Curr Opin Psychol. (2022) 44:58– 8. 10.1016/j.copsyc.2021.08.017 PubMed DOI

Hussain Z, Griffiths MD. The associations between problematic social networking site use and sleep quality, attention-deficit hyperactivity disorder, depression, anxiety and stress. Int J Ment Health Addiction. (2021) 19:686–700. 10.1007/s11469-019-00175-1 DOI

Marino C, Gini G, Vieno A, Spada MM. The associations between problematic Facebook use, psychological distress and well-being among adolescents and young adults: a systematic review and meta-analysis. J Affect Disord. (2018) 226:274–81. 10.1016/j.jad.2017.10.007 PubMed DOI

Hussin Z, Griffiths M.D. Problematic social networking site use and comorbid psychiatric disorders: a systematic review of recent large-scale studies. Front Psychiatry. (2018) 9:686. 10.3389/fpsyt.2018.00686 PubMed DOI PMC

D'Arienzo MC, Boursier V, Griffiths MD. Addiction to social media and attachment styles: a systematic literature review. Int J Ment Health Addiction. (2019) 17:1094–118. 10.1007/s11469-019-00082-5 DOI

Alonzo R, Hussain J, Stranges S, Anderson KK. Interplay between social media use, sleep quality, and mental health in youth: a systematic review. Sleep Med Rev. (2021) 56. 101414. 10.1016/j.smrv.2020.101414 PubMed DOI

Sun Y, Zhang Y. A review of theories and models applied in studies of social media addiction and implications for future research. Addict behav. (2021) 114:106699. 10.1016/j.addbeh.2020.106699 PubMed DOI

Brand M, Rumpf H-Jü, Demetrovics Z, MÜller A, Stark R, King DL, et al. . Which conditions should be considered as disorders in the International Classification of Diseases (ICD-11) designation of “other specified disorders due to addictive behaviors”? J Behav Addict. (2020) 11:150–9. 10.1556/2006.2020.00035 PubMed DOI PMC

van den Eijnden RJ, Lemmens JS, Valkenburg P.M. The social media disorder scale. Comput Hum Behav. (2016) 61:478–487. 10.1016/j.chb.2016.03.038 DOI

Andreassen CS, Torsheim T, Brunborg GS, Pallesen S. Development of a facebook addiction scale. Psychol Rep. (2012) 110:501–17. 10.2466/02.09.18.PR0.110.2.501-517 PubMed DOI

Kircaburun K, Griffiths MD. Instagram addiction and the Big Five of personality: The mediating role of self-liking. J Behav Addict. (2018) 7:158–70. 10.1556/2006.7.2018.15 PubMed DOI PMC

Balakrishnan J, Griffiths MD. An exploratory study of “Selfitis” and the development of the selfitis behavior scale. Int J Ment Health Addiction. (2017) 16:722–36. 10.1007/s11469-017-9844-x PubMed DOI PMC

Lou J, Liu H, Liu X. Development of the problematic social networking services use scale with college students. Soc Behav Pers. (2017) 45:1889–904. 10.2224/sbp.6179 DOI

Esgi N. Development of social media addiction test (SMAT17). J Edu Train Stud. (2016) 4:174–81. 10.11114/jets.v4i10.1803 DOI

Andreassen C, Billieux J, Griffiths M, Kuss D, Demetrovics Z, Mazzoni E, et al. . The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: a large-scale cross-sectional study. Psychol Addict Behav. (2016) 30:252–62. 10.1037/adb0000160 PubMed DOI

Fung S. Cross-cultural validation of the Social Media Disorder scale. Psychol Res Behav Management. (2019) 12:683–90. 10.2147/PRBM.S216788 PubMed DOI PMC

Dewi SY, Lestari YM. Validity and reliability of indonesian social media disorder (SMD) scale in adolescent. J Profesi Medika. (2020) 14:2. 10.33533/jpm.v14i2.2049 DOI

Afe T, Ogunsemi O, Ayotunde A, Olufunke A, Osalusi B, Afe B, et al. . Psychometric properties and validation of the 9-item social media scale among pre-university students in Nigeria. East Asian Archi Psychiat. (2020) 30:108–12. 10.12809/eaap1946 PubMed DOI

Boer M, Stevens G, Finkenauer C, Ina HMK, van den ER. Validation of the social media disorder scale in adolescents: findings from a large-scale nationally representative sample. Assessment. (2021). 10.31219/osf.io/2fphx. [Epub ahead of print]. PubMed DOI PMC

Sariçam H, Adam Karduz FF. The adaptation of the Social Media Disorder scale to Turkish culture: validity and reliability study. J Meas Eval Educ Psychol. (2018) 9:116–35. 10.21031/epod.335607 DOI

Savci M, Ercengiz M, Aysan F. Turkish adaptation of the social media disorder scale in adolescents. Noro Psikiyatr Ars. (2018) 55:248–55. 10.29399/npa.19285 PubMed DOI PMC

Avcu A. Use of network psychometrics approach to examine social media disorder symptoms. ADDICTA Turkish J Addict. (2021) 8:87–91. 10.5152/ADDICTA.2021.20098 DOI

Boer M, van den Eijnden RJ, Finkenauer C, Boniel-Nissim M, Marino C, Inchley J, et al. . Cross-national validation of the Social Media Disorder-scale: Findings from adolescents from 44 countries. Addiction. (2022) 117:784–95. 10.1111/add.15709 PubMed DOI PMC

Epskamp S, Rhemtulla M, Borsboom D. Generalized network psychometrics: Combining network and latent variable models. Psychometrika. (2017) 82:904–27. 10.1007/s11336-017-9557-x PubMed DOI

Kuss D, Griffiths M. Social networking sites and addiction: ten lessons learned. Int J Environ Res Public Health. (2017) 14:311. 10.3390/ijerph14030311 PubMed DOI PMC

Karacic S, Oreskovic S. Internet addiction through the phase of adolescence: a questionnaire study. JMIR Ment Health. (2017) 4:e11. 10.2196/mental.5537 PubMed DOI PMC

Inchley J, Currie D, Cosma A, Samdal O. Health Behaviour in School-Aged Children (HBSC) Study Protocol: Background, Methodology and Mandatory Items for the 2017/18 Survey. St Andrews: Child and Adolescent Health Research Unit (CEHRU) University of St Andrews; (2018).

Gariepy G, McKinnon B, Sentenac M, Elgar FJ. Validity and reliability of a brief symptom checklist to measure psychological health in school-aged children. Child Indicat Res. (2015) 9:471–84. 10.1007/s12187-015-9326-2 DOI

World Health Organization . Well-being Measures in Primary Health Care/The Depcare Project. Copenhagen: WHO Regional Office for Europe; (1998).

Mascheroni G, Ólafsson K. Different Media for Different Contacts. Net Child Go Mob Risks Oppor. 2nd ed. Milano: Educatt; (2014).

Livingstone S, Haddon L, Görzig A, Ólafsson K. Risks and Safety on the Internet: The Perspective of European Children. Full Findings. London: EU Kids Online; (2011).

van Buuren S, Groothuis-Oudshoorn K. Multivariate imputation by chained equations in R. J Stat Soft. (2011) 45:1–67. 10.18637/jss.v045.i03 DOI

Rosseel Y. lavaan: An R package for structural equation modeling. J Stat Soft. (2012) 48:1–36. 10.18637/jss.v048.i02 PubMed DOI

Jorgensen TD, Pornprasertmanit S, Schoemann AM, Rosseel Y. semTools: Useful Tools for Structural Equation Modeling. (2020). Available online at; https://CRAN.R-project.org/package=semTools (accessed March 15, 2022).

Epskamp S. Psychonetrics: Structural Equation Modeling Confirmatory Network Analysis. (2021). Available online at: https://CRAN.R-project.org/package=psychonetrics.

Rutkowski L, Svetina D. Measurement invariance in international surveys: Categorical indicators & fit measure performance. Appl Meas Educ. (2017) 30:39–51. 10.1080/08957347.2016.1243540 DOI

Svetina D, Rutkowski L, Rutkowski D. Multiple-group invariance with categorical outcomes using updated guidelines: An Illustration using Mplus and the lavaan/semTools packages. Struct Equ Model A Multidiscipl J. (2020) 27:111–30. 10.1080/10705511.2019.1602776 DOI

Mansolf M, Jorgensen TD, Enders CK. A multiple imputation score test for model modification in structural equation models. Psychol Methods. (2020) 25:393–411. 10.1037/met0000243 PubMed DOI

Li C-H. Statistical estimation of structural equation models with a mixture of continuous and categorical observed variables. Behav Research Methods. (2021) 53:2191–213. 10.3758/s13428-021-01547-z PubMed DOI

Haslbeck JM, Epskamp S, Marsman M, Waldorp LJ. Interpreting the Ising model: the input matters. Multivar Behav Res. (2020) 56:303–13. 10.1080/00273171.2020.1730150 PubMed DOI

Deserno MK, Isvoranu AM, Epskamp S, Blanken T.F. Chapter 3. Descriptive analyses of network structures. In: Isvoranu AM, Epskamp S, Waldorp LJ, Borsboom D, editors. Network Psychometrics With R: A Guide for Behavioral and Social Scientists. Routledge: Taylor & Francis Group; (2022).

Watson JC, Prosek EA, Giordano AL. Investigating psychometric properties of social media addiction measures among adolescents. J Counsel Dev. (2020) 98:458–66. 10.1002/jcad.12347 PubMed DOI

Borsboom D. A network theory of mental disorders. World Psychiatry. (2017) 16:5–13. 10.1002/wps.20375 PubMed DOI PMC

Valkenburg PM, Peter J. The differential susceptibility to media effects model. J Commun. (2013) 63:221–43. 10.1111/jcom.12024 DOI

Petry NM, Zajac K, Ginley MK. Behavioral addictions as mental disorders: to be or not to be? Annu Rev Clin Psychol. (2018) 14:399–423. 10.1146/annurev-clinpsy-032816-045120 PubMed DOI PMC

Kardefelt-Winther D, Heeren A, Schimmenti A, van Rooij A, Maurage P, Carras M, et al. . How can we conceptualize behavioural addiction without pathologizing common behaviours? Addiction. (2017) 112:1709–15. 10.1111/add.13763 PubMed DOI PMC

King DL, Delfabbro PH. The cognitive psychology of Internet gaming disorder. Clinic Psychol Rev. (2014) 34:298–308. 10.1016/j.cpr.2014.03.006 PubMed DOI

Orben A. Teenagers, screens and social media: a narrative review of reviews and key studies. Soc Psychiatry Psychiatr Epidemiol. (2020) 55:407–14. 10.1007/s00127-019-01825-4 PubMed DOI

Kardefelt-Winther D. A conceptual and methodological critique of internet addiction research: towards a model of compensatory internet use. Comput Hum Behav. (2014) 31:351–4. 10.1016/j.chb.2013.10.059 DOI

Starcevic V, Billieux J. Does the construct of Internet addiction reflect a single entity or a spectrum of disorders? Clin Neuropsychiatry. (2017) 14:5–10.

Papini S, Rubin M, Telch MJ, Smits JA, Hien D. A Pretreatment posttraumatic stress disorder symptom network metrics predict the strength of the association between node change and network change during treatment. J Trauma Stress. (2020) 33:64–71. 10.1002/jts.22379 PubMed DOI

Jones PJ, Ma R, McNally RJ. Bridge centrality: a network approach to understanding comorbidity. Multivar Behav Res. (2021) 56:353–67. 10.1080/00273171.2019.1614898 PubMed DOI

Eschenbeck H, Kohlmann C-W, Lohaus A. Gender differences in coping strategies in children and adolescents. J Individ Differ. (2007) 28:18–26. 10.1027/1614-0001.28.1.18 DOI

Zimmer-Gembeck MJ, Skinner E. A Review: The development of coping across childhood and adolescence: an integrative review and critique of research. Int J Behav Dev. (2011) 35:1–17. 10.1177/0165025410384923 DOI

Chen FF. Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct Equ Model A Multidisciplinar J. (2007) 14:464–504. 10.1080/10705510701301834 DOI

Cheung GW, Rensvold RB. Evaluating goodness-of-git indexes for testing measurement invariance. Struct Equ Model A Multidisciplinar J. (2002) 9:233–55. 10.1207/S15328007SEM0902_5 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...