• This record comes from PubMed

PAR2: The Cornerstone of Pancreatic Diseases

. 2022 Nov 28 ; 71 (5) : 583-596. [epub] 20220908

Language English Country Czech Republic Media print-electronic

Document type Review, Journal Article

It has been 30 years since the first member of the protease-activated receptor (PAR) family was discovered. This was followed by the discovery of three other receptors, including PAR2. PAR2 is a G protein-coupled receptor activated by trypsin site-specific proteolysis. The process starts with serine proteases acting between arginine and serine, creating an N-terminus that functions as a tethered ligand that binds, after a conformational change, to the second extracellular loop of the receptor, leading to activation of G-proteins. The physiological and pathological functions of this ubiquitous receptor are still elusive. This review focuses on PAR2 activation and its distribution under physiological and pathological conditions, with a particular focus on the pancreas, a significant producer of trypsin, which is the prototype activator of the receptor. The role in acute or chronic pancreatitis, pancreatic cancer, and diabetes mellitus will be highlighted.

See more in PubMed

Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991;64:1057–1068. doi: 10.1016/0092-8674(91)90261-V. PubMed DOI

Faraut B, Barbier J, Ravel-Chapuis A, Doyennette MA, Jandrot-Perrus M, Verdiere-Sahuque M, Schaeffer L, Koenig J, Hantai D. Thrombin downregulates muscle acetylcholine receptors via an IP3 signaling pathway by activating its G-protein-coupled protease-activated receptor-1. J Cell Physiol. 2003;196:105–112. doi: 10.1002/jcp.10280. PubMed DOI

van der Merwe JQ, Moreau F, MacNaughton WK. Protease-activated receptor-2 stimulates intestinal epithelial chloride transport through activation of PLC and selective PKC isoforms. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1258–G1266. doi: 10.1152/ajpgi.90425.2008. PubMed DOI

Yan S, Ding H, Peng J, Wang X, Pang C, Wei J, Wei J, Chen H. Down-regulation of protease-activated receptor 2 ameliorated osteoarthritis in rats through regulation of MAPK/NF-KB signaling pathway in vivo and in vitro. Biosci Rep. 2020;40:BSR20192620. doi: 10.1042/BSR20192620. PubMed DOI PMC

Scarborough RM, Naughton MA, Teng W, Hung DT, Rose J, Vu TK, Wheaton VI, Turck CW, Coughlin SR. Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J Biol Chem. 1992;267:13146–13149. doi: 10.1016/S0021-9258(18)42184-9. PubMed DOI

Seiler SM, Goldenberg HJ, Michel IM, Hunt JT, Zavoico GB. Multiple pathways of thrombin-induced platelet activation differentiated by desensitization and a thrombin exosite inhibitor. Biochem Biophys Res Commun. 1991;181:636–643. doi: 10.1016/0006-291X(91)91238-8. PubMed DOI

Ishihara H, Connolly A, Zeng D. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature. 1997;386:502–506. doi: 10.1038/386502a0. PubMed DOI

Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie EW, Foster DC. Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci U S A. 1998;95:6642–6646. doi: 10.1073/pnas.95.12.6642. PubMed DOI PMC

Bohm SK, Kong W, Bromme D, Smeekens SP, Anderson DC, Connolly A, Kahn M, Nelken NA, Coughlin SR, Payan DG, Bunnett NW. Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem J. 1996;314:1009–1016. doi: 10.1042/bj3141009. PubMed DOI PMC

Kawabata A, Kuroda R, Nishida M, Nagata N, Sakaguchi Y, Kawao N, Nishikawa H, Arizono N, Kawai K. Protease-activated receptor-2 (PAR-2) in the pancreas and parotid gland: Immunolocalization and involvement of nitric oxide in the evoked amylase secretion. Life Sci. 2002;71:2435–2446. doi: 10.1016/S0024-3205(02)02044-1. PubMed DOI

Wronkowitz N, Gorgens SW, Romacho T, Villalobos LA, Sanchez-Ferrer CF, Peiro C, Sell H, Eckel J. Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2. Biochim Biophys Acta. 2014;1842:1613–1621. doi: 10.1016/j.bbadis.2014.06.004. PubMed DOI

Chen JM, Ferec C. Gene conversion-like missense mutations in the human cationic trypsinogen gene and insights into the molecular evolution of the human trypsinogen family. Mol Genet Metab. 2000;71:463–469. doi: 10.1006/mgme.2000.3086. PubMed DOI

Jenkins AL, Chinni C, De Niese MR, Blackhart B, Mackie EJ. Expression of protease-activated receptor-2 during embryonic development. Dev Dyn. 2000;218:465–471. doi: 10.1002/1097-0177(200007)218:3<465::AID-DVDY1013>3.0.CO;2-5. PubMed DOI

D'Andrea MR, Derian CK, Leturcq D, Baker SM, Brunmark A, Ling P, Darrow AL, Santulli RJ, Brass LF, Andrade-Gordon P. Characterization of protease-activated receptor-2 immunoreactivity in normal human tissues. J Histochem Cytochem. 1998;46:157–164. doi: 10.1177/002215549804600204. PubMed DOI

Afkhami-Goli A, Noorbakhsh F, Keller AJ, Vergnolle N, Westaway D, Jhamandas JH, Andrade-Gordon P, Hollenberg MD, Arab H, Dyck RH, Power C. Proteinase-activated receptor-2 exerts protective and pathogenic cell type-specific effects in Alzheimer's disease. J Immunol. 2007;179:5493–5503. doi: 10.4049/jimmunol.179.8.5493. PubMed DOI

Noorbakhsh F, Tsutsui S, Vergnolle N, Boven LA, Shariat N, Vodjgani M, Warren KG, Andrade-Gordon P, Hollenberg MD, Power C. Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Exp Med. 2006;203:425–435. doi: 10.1084/jem.20052148. PubMed DOI PMC

Liu P, Sun L, Zhao XL, Zhang P, Zhao XM, Zhang J. PAR2-mediated epigenetic upregulation of a-synuclein contributes to the pathogenesis of Parkinson's disease. Brain Res. 2014;1565:82–89. doi: 10.1016/j.brainres.2014.04.014. PubMed DOI

Olejar T, Matej R, Zadinova M, Pouckova P. Proteinase-activated receptor-2 expression on cerebral neurones after radiation damage: immunohistochemical observation in Wistar rats. Int J Tissue React. 2002;24:81–88. PubMed

Li TZ, Deng H, Liu Q, Xia YZ, Darwazeh R, Yan Y. Protease-activated receptor-2 regulates glial scar formation via JNK signaling. Physiol Res. 2019;68:305–316. doi: 10.33549/physiolres.933908. PubMed DOI

Molino M, Raghunath PN, Kuo A, Ahuja M, Hoxie JA, Brass LF, Barnathan ES. Differential expression of functional protease-activated receptor-2 (PAR-2) in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1998;18:825–832. doi: 10.1161/01.ATV.18.5.825. PubMed DOI

McGuire JJ, Hollenberg MD, Andrade-Gordon P, Triggle CR. Multiple mechanisms of vascular smooth muscle relaxation by the activation of proteinase-activated receptor 2 in mouse mesenteric arterioles. Br J Pharmacol. 2002;135:155–169. doi: 10.1038/sj.bjp.0704469. PubMed DOI PMC

Jones SM, Mann A, Conrad K, Saum K, Hall DE, McKinney LM, Robbins N, et al. PAR2 (Protease-Activated Receptor 2) deficiency attenuates atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2018;38:1271–1282. doi: 10.1161/ATVBAHA.117.310082. PubMed DOI PMC

Chan AK, Vergnolle N, Hollenberg MD, von der Weid PY. Proteinase-activated receptor 2 activation modulates guinea-pig mesenteric lymphatic vessel pacemaker potential and contractile activity. J Physiol. 2004;560:563–576. doi: 10.1113/jphysiol.2004.071399. PubMed DOI PMC

Sabri A, Muske G, Zhang H, Pak E, Darrow A, Andrade-Gordon P, Steinberg SF. Signaling properties and functions of two distinct cardiomyocyte protease-activated receptors. Circ Res. 2000;86:1054–1061. doi: 10.1161/01.RES.86.10.1054. PubMed DOI

Friebel J, Weithauser A, Witkowski M, Rauch BH, Savvatis K, Dorner A, Tabaraie T, et al. Protease-activated receptor 2 deficiency mediates cardiac fibrosis and diastolic dysfunction. Eur Heart J. 2019;40:3318–3332. doi: 10.1093/eurheartj/ehz117. PubMed DOI

Asaduzzaman M, Nadeem A, Arizmendi N, Davidson C, Nichols HL, Abel M, Ionescu LI, et al. Functional inhibition of PAR2 alleviates allergen-induced airway hyperresponsiveness and inflammation. Clin Exp Allergy. 2015;45:1844–1855. doi: 10.1111/cea.12628. PubMed DOI

Wygrecka M, Dahal BK, Kosanovic D, Petersen F, Taborski B, von Gerlach S, Didiasova M, et al. Mast cells and fibroblasts work in concert to aggravate pulmonary fibrosis: role of transmembrane SCF and the PAR-2/PKC-a/Raf-1/p44/42 signaling pathway. Am J Pathol. 2013;182:2094–2108. doi: 10.1016/j.ajpath.2013.02.013. PubMed DOI

Lin C, von der Thusen J, Daalhuisen J, ten Brink M, Crestani B, van der Poll T, Borensztajn K, Spek CA. Pharmacological targeting of protease-activated receptor 2 affords protection from bleomycin-induced pulmonary fibrosis. Mol Med. 2015;21:576–583. doi: 10.2119/molmed.2015.00094. PubMed DOI PMC

Jarry A, Dorso L, Gratio V, Forgue-Lafitte ME, Laburthe M, Laboisse CL, Darmoul D. PAR-2 activation increases human intestinal mucin secretion through EGFR transactivation. Biochem Biophys Res Commun. 2007;364:689–694. doi: 10.1016/j.bbrc.2007.10.073. PubMed DOI

Kawabata A, Matsunami M, Sekiguchi F. Gastrointestinal roles for proteinase-activated receptors in health and disease. Br J Pharmacol. 2008;153(Suppl 1):S230–S240. doi: 10.1038/sj.bjp.0707491. PubMed DOI PMC

Vesey DA, Hooper JD, Gobe GC, Johnson DW. Potential physiological and pathophysiological roles for protease-activated receptor-2 in the kidney. Nephrology (Carlton) 2007;12:36–43. doi: 10.1111/j.1440-1797.2006.00746.x. PubMed DOI

Lopez ML, Soriano-Sarabia N, Bruges G, Marquez ME, Preissner KT, Schmitz ML, Hackstein H. Expression pattern of protease activated receptors in lymphoid cells. Cell Immunol. 2014;288:47–52. doi: 10.1016/j.cellimm.2014.02.004. PubMed DOI

Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev. 2005;26:1–43. doi: 10.1210/er.2003-0025. PubMed DOI

Nguyen TD, Moody MW, Steinhoff M, Okolo C, Koh DS, Bunnett NW. Trypsin activates pancreatic duct epithelial cell ion channels through proteinase-activated receptor-2. J Clin Invest. 1999;103:261–269. doi: 10.1172/JCI2539. PubMed DOI PMC

Alvarez C, Regan JP, Merianos D, Bass BL. Protease-activated receptor-2 regulates bicarbonate secretion by pancreatic duct cells in vitro. Surgery. 2004;136:669–676. doi: 10.1016/j.surg.2004.01.018. PubMed DOI

Olejar T, Matej R, Zadinova M, Pouckova P. Expression of proteinase-activated receptor 2 during taurocholate-induced acute pancreatic lesion development in Wistar rats. Int J Gastrointest Cancer. 2001;30:113–121. doi: 10.1385/IJGC:30:3:113. PubMed DOI

Hrabák P, Kalousová M, Krechler T, Zima T. Pancreatic stellate cells - rising stars in pancreatic pathologies. Physiol Res. 2021;70(Suppl 4):S597–S616. doi: 10.33549//physiolres.934783. PubMed DOI PMC

Masamune A, Kikuta K, Satoh M, Suzuki N, Shimosegawa T. Protease-activated receptor-2-mediated proliferation and collagen production of rat pancreatic stellate cells. J Pharmacol Exp Ther. 2005;312:651–658. doi: 10.1124/jpet.104.076232. PubMed DOI

Namkung W, Yoon JS, Kim KH, Lee MG. PAR2 exerts local protection against acute pancreatitis via modulation of MAP kinase and MAP kinase phosphatase signaling. Am J Physiol Gastrointest Liver Physiol. 2008;295:G886–G894. doi: 10.1152/ajpgi.00053.2008. PubMed DOI

Singh VP, Bhagat L, Navina S, Sharif R, Dawra RK, Saluja AK. Protease-activated receptor-2 protects against pancreatitis by stimulating exocrine secretion. Gut. 2007;56:958–964. doi: 10.1136/gut.2006.094268. PubMed DOI PMC

Kim MH, Choi BH, Jung SR, Sernka TJ, Kim S, Kim KT, Hille B, Nguyen TD, Koh DS. Protease-activated receptor-2 increases exocytosis via multiple signal transduction pathways in pancreatic duct epithelial cells. J Biol Chem. 2008;283:18711–18720. doi: 10.1074/jbc.M801655200. PubMed DOI PMC

Merilainen S, Makela J, Anttila V, Koivukangas V, Kaakinen H, Niemela E, Ohtonen P, Risteli J, Karttunen T, Soini Y, Juvonen T. Acute edematous and necrotic pancreatitis in a porcine model. Scand J Gastroenterol. 2008;43:1259–1268. doi: 10.1080/00365520802158580. PubMed DOI

Bradley EL., 3rd A clinically based classification system for acute pancreatitis. Summary of the International Symposium on Acute Pancreatitis, Atlanta, Ga, September 11 through 13,1992. Arch Surg. 1993;128:586–590. doi: 10.1001/archsurg.1993.01420170122019. PubMed DOI

Namkung W, Han W, Luo X, Muallem S, Cho KH, Kim KH, Lee MG. Protease-activated receptor 2 exerts local protection and mediates some systemic complications in acute pancreatitis. Gastroenterology. 2004;126:1844–1859. doi: 10.1053/j.gastro.2004.03.019. PubMed DOI

Toyama MT, Lewis MP, Kusske AM, Reber PU, Ashley SW, Reber HA. Ischaemia-reperfusion mechanisms in acute pancreatitis. Scand J Gastroenterol. 1996;219(Suppl):20–23. doi: 10.3109/00365529609104994. PubMed DOI

De-Madaria E, del Mar Frances M, Gea-Sorli S, Gutierrez LM, Viniegra S, Perez-Mateo M, Closa D, Lopez-Font I. Role of protease-activated receptor 2 in lung injury development during acute pancreatitis in rats. Pancreas. 2014;43:895–902. doi: 10.1097/MPA.0000000000000152. PubMed DOI

Matej R, Housa D, Olejar T. Acute pancreatitis: proteinase-activated receptor-2 as Dr. Jekyll and Mr Hyde. Physiol Res. 2006;55:467–474. doi: 10.33549/physiolres.930798. PubMed DOI

Beyer G, Habtezion A, Werner J, Lerch MM, Mayerle J. Chronic pancreatitis. Lancet. 2020;396:499–512. doi: 10.1016/S0140-6736(20)31318-0. PubMed DOI

Vege SS, Chari ST. Chronic Pancreatitis. N Engl J Med. 2022;386:869–878. doi: 10.1056/NEJMcp1809396. PubMed DOI

Howes N, Greenhalf W, Stocken DD, Neoptolemos JP. Cationic trypsinogen mutations and pancreatitis. Gastroenterol Clin North Am. 2004;33:767–787. doi: 10.1016/j.gtc.2004.07.003. PubMed DOI

Pallagi P, Venglovecz V, Rakonczay Z, Jr, Borka K, Korompay A, Ozsvari B, Judak L, et al. Trypsin reduces pancreatic ductal bicarbonate secretion by inhibiting CFTR Cl− channels and luminal anion exchangers. Gastroenterology. 2011;141:2228–2239. doi: 10.1053/j.gastro.2011.08.039. PubMed DOI PMC

Demir IE, Schorn S, Schremmer-Danninger E, Wang K, Kehl T, Giese NA, Algul H, Friess H, Ceyhan GO. Perineural mast cells are specifically enriched in pancreatic neuritis and neuropathic pain in pancreatic cancer and chronic pancreatitis. PLoS One. 2013;8:e60529. doi: 10.1371/journal.pone.0060529. PubMed DOI PMC

Zhu J, Miao XR, Tao KM, Zhu H, Liu ZY, Yu DW, Chen QB, Qiu HB, Lu ZJ. Trypsin-protease activated receptor-2 signaling contributes to pancreatic cancer pain. Oncotarget. 2017;8:61810–61823. doi: 10.18632/oncotarget.18696. PubMed DOI PMC

Bertaccini G, De Caro G, Melchiorri P. The effects of caerulein on insulin secretion in anaesthetized dogs. Br J Pharmacol. 1970;40:78–85. doi: 10.1111/j.1476-5381.1970.tb10612.x. PubMed DOI PMC

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34(Suppl 1):S62–S69. doi: 10.2337/dc11-S062. PubMed DOI PMC

Liu Q. PRSS1 mutation: a possible pathomechanism of pancreatic carcinogenesis and pancreatic cancer. Mol Med. 2019;2:44. doi: 10.1186/s10020-019-0111-4. PubMed DOI PMC

Piran R, Lee SH, Kuss P, Hao E, Newlin R, Millan JL, Levine F. PAR2 regulates regeneration, transdifferentiation, and death. Cell Death Dis. 2016;7:e2452. doi: 10.1038/cddis.2016.357. PubMed DOI PMC

Lim J, Iyer A, Liu L, Suen JY, Lohman RJ, Seow V, Yau MK, Brown L, Fairlie DP. Diet-induced obesity, adipose inflammation, and metabolic dysfunction correlating with PAR2 expression are attenuated by PAR2 antagonism. FASEB J. 2013;27:4757–4767. doi: 10.1096/fj.13-232702. PubMed DOI

Ducroc R, Bontemps C, Marazova K, Devaud H, Darmoul D, Laburthe M. Trypsin is produced by and activates protease-activated receptor-2 in human cancer colon cells: evidence for new autocrine loop. Life Sci. 2002;70:1359–1367. doi: 10.1016/S0024-3205(01)01519-3. PubMed DOI

Vogt PK. Fortuitous convergences: the beginnings of JUN. Nat Rev Cancer. 2002;2:465–469. doi: 10.1038/nrc818. PubMed DOI

Hu L, Xia L, Zhou H, Wu B, Mu Y, Wu Y, Yan J. TF/FVIIa/PAR2 promotes cell proliferation and migration via PKCa and ERK-dependent c-Jun/AP-1 pathway in colon cancer cell line SW620. Tumour Biol. 2013;34:2573–2581. doi: 10.1007/s13277-013-0803-2. PubMed DOI

Kaufmann R, Hascher A, Mussbach F, Henklein P, Katenkamp K, Westermann M, Settmacher U. Proteinase-activated receptor 2 (PAR(2)) in cholangiocarcinoma (CCA) cells: effects on signaling and cellular level. Histochem Cell Biol. 2012;138:913–924. doi: 10.1007/s00418-012-1006-4. PubMed DOI

Sun L, Li PB, Yao YF, Xiu AY, Peng Z, Bai YH, Gao YJ. Proteinase-activated receptor 2 promotes tumor cell proliferation and metastasis by inducing epithelial-mesenchymal transition and predicts poor prognosis in hepatocellular carcinoma. World J Gastroenterol. 2018;24:1120–1133. doi: 10.3748/wjg.v24.i10.1120. PubMed DOI PMC

Shi K, Queiroz KC, Roelofs JJ, van Noesel CJ, Richel DJ, Spek CA. Protease-activated receptor 2 suppresses lymphangiogenesis and subsequent lymph node metastasis in a murine pancreatic cancer model. J Pathol. 2014;234:398–409. doi: 10.1002/path.4411. PubMed DOI

Olejar T, Vetvicka D, Zadinova M, Pouckova P, Kukal J, Jezek P, Matej R. Dual role of host Par2 in a murine model of spontaneous metastatic B16 melanoma. Anticancer Res. 2014;34:3511–3515. PubMed

Sareide K, Roalsa M, Aunan JR. Is there a Trojan horse to aggressive pancreatic cancer biology? A review of the trypsin-PAR2 axis to proliferation, early invasion, and metastasis. J Pancreat Cancer. 2020;6:12–20. doi: 10.1089/pancan.2019.0014. PubMed DOI PMC

Basturk O, Hong SM, Wood LD, Adsay NV, Albores-Saavedra J, Biankin AV, Brosens LA, et al. A revised classification system and recommendations from the Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. Am J Surg Pathol. 2015;39:1730–1741. doi: 10.1097/PAS.0000000000000533. PubMed DOI PMC

Kim JY, Hong SM. Precursor lesions of pancreatic cancer. Oncol Res Treat. 2018;41:603–610. doi: 10.1159/000493554. PubMed DOI

Rebours V, Levy P, Mosnier JF, Scoazec JY, Soubeyrand MS, Flejou JF, Turlin B, Hammel P, Ruszniewski P, Bedossa P, Couvelard A. Pathology analysis reveals that dysplastic pancreatic ductal lesions are frequent in patients with hereditary pancreatitis. Clin Gastroenterol Hepatol. 2010;8:206–212. doi: 10.1016/j.cgh.2009.09.009. PubMed DOI

Yada K, Shibata K, Matsumoto T, Ohta M, Yokoyama S, Kitano S. Protease-activated receptor-2 regulates cell proliferation and enhances cyclooxygenase-2 mRNA expression in human pancreatic cancer cells. J Surg Oncol. 2005;89:79–85. doi: 10.1002/jso.20197. PubMed DOI

Luchini C, Capelli P, Scarpa A. Pancreatic ductal adenocarcinoma and its variants. Surg Pathol Clin. 2016;9:547–560. doi: 10.1016/j.path.2016.05.003. PubMed DOI

Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol. 2016;22:9694–9705. doi: 10.3748/wjg.v22.i44.9694. PubMed DOI PMC

Wada K. p16 and p53 gene alterations and accumulations in the malignant evolution of intraductal papillary-mucinous tumors of the pancreas. J Hepatobiliary Pancreat Surg. 2002;9:76–85. doi: 10.1007/s005340200007. PubMed DOI

Shimamoto R, Sawada T, Uchima Y, Inoue M, Kimura K, Yamashita Y, Yamada N, Nishihara T, Ohira M, Hirakawa K. A role for protease-activated receptor-2 in pancreatic cancer cell proliferation. Int J Oncol. 2004;24:1401–1406. PubMed

Ikeda O, Egami H, Ishiko T, Ishikawa S, Kamohara H, Hidaka H, Mita S, Ogawa M. Expression of proteinase-activated receptor-2 in human pancreatic cancer: a possible relation to cancer invasion and induction of fibrosis. Int J Oncol. 2003;22:295–300. doi: 10.3892/ijo.22.2.295. PubMed DOI

Shi K, Queiroz KC, Stap J, Richel DJ, Spek CA. Protease-activated receptor-2 induces migration of pancreatic cancer cells in an extracellular ATP-dependent manner. J Thromb Haemost. 2013;11:1892–1902. doi: 10.1111/jth.12361. PubMed DOI

Xie L, Duan Z, Liu C, Zheng Y, Zhou J. Protease-activated receptor 2 agonist increases cell proliferation and invasion of human pancreatic cancer cells. Exp Ther Med. 2015;9:239–244. doi: 10.3892/etm.2014.2052. PubMed DOI PMC

Ikeda O, Egami H, Ishiko T, Ishikawa S, Kamohara H, Hidaka H, Takahashi M, Ogawa M. Signal of proteinase-activated receptor-2 contributes to highly malignant potential of human pancreatic cancer by up-regulation of interleukin-8 release. Int J Oncol. 2006;28:939–946. doi: 10.3892/ijo.28.4.939. PubMed DOI

Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, Rao GV, Reddy DN, Talukdar R. Pancreatic stellate cell: Pandora's box for pancreatic disease biology. World J Gastroenterol. 2017;23:382–405. doi: 10.3748/wjg.v23.i3.382. PubMed DOI PMC

Chang LH, Pan SL, Lai CY, Tsai AC, Teng CM. Activated PAR-2 regulates pancreatic cancer progression through ILK/HIF-a-induced TGF-a expression and MEK/VEGF-A-mediated angiogenesis. Am J Pathol. 2013;183:566–575. doi: 10.1016/j.ajpath.2013.04.022. PubMed DOI

Dobosz E, Kaczor M, Stefaniak TJ. Pain in pancreatic cancer: review of medical and surgical remedies. ANZ J Surg. 2016;86:756–761. doi: 10.1111/ans.13609. PubMed DOI

Li W, Nakagawa T, Koyama N, Wang X, Jin J, Mizuno-Horikawa Y, Gu J, Miyoshi E, Kato I, Honke K, Taniguchi N, Kondo A. Down-regulation of trypsinogen expression is associated with growth retardation in alpha1,6-fucosyltransferase-deficient mice: attenuation of proteinase-activated receptor 2 activity. Glycobiology. 2006;16:1007–1019. doi: 10.1093/glycob/cwl023. PubMed DOI

Halangk W, Sturzebecher J, Matthias R, Schulz HU, Lippert H. Trypsinogen activation in rat pancreatic acinar cells hyperstimulated by caerulein. Biochim Biophys Acta. 1997;1362:243–251. doi: 10.1016/S0925-4439(97)00082-3. PubMed DOI

Aho HJ, Koskensalo SM, Nevalainen TJ. Experimental pancreatitis in the rat. Sodium taurocholate-induced acute haemorrhagic pancreatitis. Scand J Gastroenterol. 1980;15:411–416. doi: 10.3109/00365528009181493. PubMed DOI

Maeda K, Hirota M, Kimura Y, Ichihara A, Ohmuraya M, Sugita H, Ogawa M. Proinflammatory role of trypsin and protease-activated receptor-2 in a rat model of acute pancreatitis. Pancreas. 2005;31:54–62. doi: 10.1097/01.mpa.0000163178.37050.0d. PubMed DOI

Laukkarinen JM, Weiss ER, van Acker GJ, Steer ML, Perides G. Protease-activated receptor-2 exerts contrasting model-specific effects on acute experimental pancreatitis. J Biol Chem. 2008;283:20703–20712. doi: 10.1074/jbc.M801779200. PubMed DOI PMC

Lee SH, Hao E, Scharp D, Levine F. Insulin acts as a repressive factor to inhibit the ability of PAR2 to induce islet cell transdifferentiation. Islets. 2018;10:1–12. doi: 10.1080/19382014.2018.1472839. PubMed DOI PMC

Collombat P, Xu X, Ravassard P, Sosa-Pineda B, Dussaud S, Billestrup N, Madsen OD, Serup P, Heimberg H, Mansouri A. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell. 2009;138:449–462. doi: 10.1016/j.cell.2009.05.035. PubMed DOI PMC

McIntosh KA, Cunningham MR, Bushell T, Plevin R. The development of proteinase-activated receptor-2 modulators and the challenges involved. Biochem Soc Trans. 2020;48:2525–2537. doi: 10.1042/BST20200191. PubMed DOI PMC

Cheng RKY, Fiez-Vandal C, Schlenker O, Edman K, Aggeler B, Brown DG, Brown GA, et al. Structural insight into allosteric modulation of protease-activated receptor 2. Nature. 2017;545:112–115. doi: 10.1038/nature22309. PubMed DOI

Baker NC, Lipinski MJ, Lhermusier T, Waksman R. Overview of the 2014 Food and Drug Administration Cardiovascular and Renal Drugs Advisory Committee meeting about vorapaxar. Circulation. 2014;130:1287–1294. doi: 10.1161/CIRCULATIONAHA.114.011471. PubMed DOI

Ocasio-Rivera M, Marin-Maldonado F, Trossi-Torres G, Ortiz-Rosado A, Rodriguez-Irizarry V, Rodriguez-Lopez E, Martinez S, Almodovar S, Suarez-Martinez E. Targeting of protease activator receptor-2 (PAR-2) antagonist FSLLRY-NH2 as an asthma adjuvant therapy. Medicine (Baltimore) 2020;99:e22351. doi: 10.1097/MD.0000000000022351. PubMed DOI PMC

Avet C, Sturino C, Grastilleur S, Gouill CL, Semache M, Gross F, Gendron L, Bennani Y, Mancini JA, Sayegh CE, Bouvier M. The PAR2 inhibitor I-287 selectively targets Gaq and Ga12/13 signaling and has anti-inflammatory effects. Commun Biol. 2020;3:719. doi: 10.1038/s42003-020-01453-8. PubMed DOI PMC

Michael ES, Kuliopulos A, Covic L, Steer ML, Perides G. Pharmacological inhibition of PAR2 with the pepducin P2pal-18S protects mice against acute experimental biliary pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2013;304:G516–G526. doi: 10.1152/ajpgi.00296.2012. PubMed DOI PMC

Shanshan H, Lan X, Xia L, Huang W, Meifang Z, Ling Y. Inhibition of protease-activated receptor-2 induces apoptosis in cervical cancer by inhibiting signal transducer and activator of transcription-3 signaling. J Int Med Res. 2019;47:1330–1338. doi: 10.1177/0300060518820440. PubMed DOI PMC

Jiang Y, Zhuo X, Wu Y, Fu X, Mao C. PAR2 blockade reverses osimertinib resistance in non-small-cell lung cancer cells via attenuating ERK-mediated EMT and PD-L1 expression. Biochim Biophys Acta Mol Cell Res. 2022;1869:119144. doi: 10.1016/j.bbamcr.2021.119144. PubMed DOI

Duc NM, Kim HR, Chung KY. Structural mechanism of G protein activation by G protein-coupled receptor. Eur J Pharmacol. 2015;763:214–222. doi: 10.1016/j.ejphar.2015.05.016. PubMed DOI

Pfeil EM, Brands J, Merten N, Vogtle T, Vescovo M, Rick U, Albrecht IM, et al. Heterotrimeric G protein subunit Gaq is a master switch for Gβy-mediated calcium mobilization by Gi-coupled GPCRs. Mol Cell. 2020;80:940–954. doi: 10.1016/j.molcel.2020.10.027. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...