Insight into the Investigation of Diamond Nanoparticles Suspended Therminol®55 Nanofluids on Concentrated Photovoltaic/Thermal Solar Collector
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36080012
PubMed Central
PMC9458180
DOI
10.3390/nano12172975
PII: nano12172975
Knihovny.cz E-resources
- Keywords
- nanofluid, optical properties, stability and CPV/T solar collector, thermal properties,
- Publication type
- Journal Article MeSH
Nanofluids are identified as advanced working fluids in the solar energy conversion field with superior heat transfer characteristics. This research work introduces carbon-based diamond nanomaterial and Therminol®55 oil-based nanofluids for implementation in a concentrated photovoltaic/thermal (CPV/T) solar collector. This study focuses on the experimental formulation, characterization of properties, and performance evaluation of the nanofluid-based CPV/T system. Thermo-physical (thermal conductivity, viscosity, and rheology), optical (UV-vis and FT-IR), and stability (Zeta potential) properties of the formulated nanofluids are characterized at 0.001-0.1 wt.% concentrations of dispersed particles using experimental assessment. The maximum photo-thermal energy conversion efficiency of the base fluid is improved by 120.80% at 0.1 wt.%. The thermal conductivity of pure oil is increased by adding the nanomaterial. The highest enhancement of 73.39% is observed for the TH-55/DP nanofluid. Furthermore, dynamic viscosity decreased dramatically across the temperature range studied (20-100 °C), and the nanofluid exhibited dominant Newtonian flow behavior, with viscosity remaining nearly constant up to a shear rate of 100 s-1. Numerical simulations of the nanofluid-operated CPV/T collector have disclosed substantial improvements. At a concentrated solar irradiance of 5000 W/m2 and an optimal flow rate of 3 L/min, the highest thermal and electrical energy conversion efficiency enhancements are found to be 11 and 1.8%, respectively.
See more in PubMed
Rasih R.A., Sidik N.A.C., Samion S. Recent progress on concentrating direct absorption solar collector using nanofluids. J. Therm. Anal. Calorim. 2019;137:903–922. doi: 10.1007/s10973-018-7964-6. DOI
Das L., Habib K., Irshad K., Saidur R., Algarni S., Alqahtani T. Thermo-Optical Characterization of Therminol55 Based MXene–Al2O3 Hybridized Nanofluid and New Correlations for Thermal Properties. Nanomaterials. 2022;12:1862. doi: 10.3390/nano12111862. PubMed DOI PMC
Das L., Rubbi F., Habib K., Aslfattahi N., Saidur R., Baran Saha B., Algarni S., Irshad K., Alqahtani T. State-of-the-art ionic liquid & ionanofluids incorporated with advanced nanomaterials for solar energy applications. J. Mol. Liq. 2021;336:116563. doi: 10.1016/j.molliq.2021.116563. DOI
Das L., Rubbi F., Habib K., Saidur R., Islam N., Saha B.B., Aslfattahi N., Irshad K. Hydrothermal performance improvement of an inserted double pipe heat exchanger with Ionanofluid. Case Stud. Therm. Eng. 2021;28:101533. doi: 10.1016/j.csite.2021.101533. DOI
George M., Pandey A.K., Abd Rahim N., Tyagi V.V., Shahabuddin S., Saidur R. Concentrated photovoltaic thermal systems: A component-by-component view on the developments in the design, heat transfer medium and applications. Energy Convers. Manag. 2019;186:15–41. doi: 10.1016/j.enconman.2019.02.052. DOI
Flitsanov Y., Kribus A. A cooler for dense-array CPV receivers based on metal foam. Sol. Energy. 2018;160:25–31. doi: 10.1016/j.solener.2017.12.002. DOI
Daneshazarian R., Cuce E., Cuce P.M., Sher F. Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications. Renew. Sustain. Energy Rev. 2018;81:473–492. doi: 10.1016/j.rser.2017.08.013. DOI
Rahman M.M., Hasanuzzaman M., Rahim N.A. Effects of operational conditions on the energy efficiency of photovoltaic modules operating in Malaysia. J. Clean. Prod. 2017;143:912–924. doi: 10.1016/j.jclepro.2016.12.029. DOI
Chaabane M., Charfi W., Mhiri H., Bournot P. Performance evaluation of concentrating solar photovoltaic and photovoltaic/thermal systems. Sol. Energy. 2013;98:315–321. doi: 10.1016/j.solener.2013.09.029. DOI
Lee J.H., Hwang S.G., Lee G.H. Efficiency Improvement of a Photovoltaic Thermal (PVT) System Using Nanofluids. Energies. 2019;12:3063. doi: 10.3390/en12163063. DOI
Angayarkanni S.A., Philip J. Review on thermal properties of nanofluids: Recent developments. Adv. Colloid Interface Sci. 2015;225:146–176. doi: 10.1016/j.cis.2015.08.014. PubMed DOI
Ahmad S.H.A., Saidur R., Mahbubul I.M., Al-Sulaiman F.A. Optical properties of various nanofluids used in solar collector: A review. Renew. Sustain. Energy Rev. 2017;73:1014–1030. doi: 10.1016/j.rser.2017.01.173. DOI
Sezer N., Atieh M.A., Koç M. A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technol. 2019;344:404–431. doi: 10.1016/j.powtec.2018.12.016. DOI
Li Z., Lei H., Kan A., Xie H., Yu W. Photothermal applications based on graphene and its derivatives: A state-of-the-art review. Energy. 2021;216:119262. doi: 10.1016/j.energy.2020.119262. DOI
Ghalandari M., Maleki A., Haghighi A., Safdari Shadloo M., Alhuyi Nazari M., Tlili I. Applications of nanofluids containing carbon nanotubes in solar energy systems: A review. J. Mol. Liq. 2020;313:113476. doi: 10.1016/j.molliq.2020.113476. DOI
Qiu L., Zhu N., Feng Y., Michaelides E.E., Żyła G., Jing D., Zhang X., Norris P.M., Markides C.N., Mahian O. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Phys. Rep. 2020;843:1–81. doi: 10.1016/j.physrep.2019.12.001. DOI
Parashar N., Yahya S.M. Thermophysical and rheological properties of hybrid nanofluids: A review on recent studies. J. Therm. Anal. Calorim. 2021;147:4411–4449. doi: 10.1007/s10973-021-10854-8. DOI
Arshad A., Jabbal M., Yan Y., Reay D. A review on graphene based nanofluids: Preparation, characterization and applications. J. Mol. Liq. 2019;279:444–484. doi: 10.1016/j.molliq.2019.01.153. DOI
Rubbi F., Das L., Habib K., Aslfattahi N., Saidur R., Alam S.U. A comprehensive review on advances of oil-based nanofluids for concentrating solar thermal collector application. J. Mol. Liq. 2021;338:116771. doi: 10.1016/j.molliq.2021.116771. DOI
Yu W., Xie H., Wang X., Wang X. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys. Lett. A. 2011;375:1323–1328. doi: 10.1016/j.physleta.2011.01.040. DOI
Yarmand H., Gharehkhani S., Shirazi S.F.S., Amiri A., Alehashem M.S., Dahari M., Kazi S.N. Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene nanoplatelets aqueous nanofluid in a square heated pipe. Energy Convers. Manag. 2016;114:38–49. doi: 10.1016/j.enconman.2016.02.008. DOI
Chen W.-L., Chou H.-M., Yang Y.-C. Inverse estimation of the unknown base heat flux in irregular fins made of functionally graded materials. Int. Commun. Heat Mass Transf. 2017;87:157–163. doi: 10.1016/j.icheatmasstransfer.2017.07.003. DOI
Menbari A., Alemrajabi A.A., Ghayeb Y. Investigation on the stability, viscosity and extinction coefficient of CuO–Al2O3/Water binary mixture nanofluid. Exp. Therm. Fluid Sci. 2016;74:122–129. doi: 10.1016/j.expthermflusci.2015.11.025. DOI
Deymi-Dashtebayaz M., Rezapour M. The effect of using nanofluid flow into a porous channel in the CPVT under transient solar heat flux based on energy and exergy analysis. J. Therm. Anal. Calorim. 2021;145:507–521. doi: 10.1007/s10973-020-09796-4. DOI
Alwan Sywan Alshaheen A., Kianifar A., Baradaran Rahimi A. Experimental study of using nano-(GNP, MWCNT, and SWCNT)/water to investigate the performance of a PVT module. J. Therm. Anal. Calorim. 2020;139:3549–3561. doi: 10.1007/s10973-019-08724-5. DOI
Sahin A.Z., Uddin M.A., Yilbas B.S., Al-Sharafi A. Performance enhancement of solar energy systems using nanofluids: An updated review. Renew. Energy. 2020;145:1126–1148. doi: 10.1016/j.renene.2019.06.108. DOI
Sardarabadi M., Hosseinzadeh M., Kazemian A., Passandideh-Fard M. Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints. Energy. 2017;138:682–695. doi: 10.1016/j.energy.2017.07.046. DOI
Rubbi F., Das L., Habib K., Aslfattahi N., Saidur R., Rahman M.T. State-of-the-art review on water-based nanofluids for low temperature solar thermal collector application. Sol. Energy Mater. Sol. Cells. 2021;230:111220. doi: 10.1016/j.solmat.2021.111220. DOI
Qu J., Zhang R., Wang Z., Wang Q. Photo-thermal conversion properties of hybrid CuO-MWCNT/H2O nanofluids for direct solar thermal energy harvest. Appl. Therm. Eng. 2019;147:390–398. doi: 10.1016/j.applthermaleng.2018.10.094. DOI
Hemmat Esfe M., Kamyab M.H., Valadkhani M. Application of nanofluids and fluids in photovoltaic thermal system: An updated review. Sol. Energy. 2020;199:796–818. doi: 10.1016/j.solener.2020.01.015. DOI
Nasrin R., Hasanuzzaman M., Rahim N.A. Effect of nanofluids on heat transfer and cooling system of the photovoltaic/thermal performance. Int. J. Numer. Methods Heat Fluid Flow. 2019;29:1920–1946. doi: 10.1108/HFF-04-2018-0174. DOI
Bellos E., Tzivanidis C. Investigation of a nanofluid-based concentrating thermal photovoltaic with a parabolic reflector. Energy Convers. Manag. 2019;180:171–182. doi: 10.1016/j.enconman.2018.11.008. DOI
Alous S., Kayfeci M., Uysal A. Experimental investigations of using MWCNTs and graphene nanoplatelets water-based nanofluids as coolants in PVT systems. Appl. Therm. Eng. 2019;162:114265. doi: 10.1016/j.applthermaleng.2019.114265. DOI
Rubbi F., Habib K., Saidur R., Aslfattahi N., Yahya S.M., Das L. Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as A new class of heat transfer fluids. Sol. Energy. 2020;208:124–138. doi: 10.1016/j.solener.2020.07.060. DOI
Kazem H.A., Al-Waeli A.H.A., Chaichan M.T., Sopian K. Numerical and experimental evaluation of nanofluids based photovoltaic/thermal systems in Oman: Using silicone-carbide nanoparticles with water-ethylene glycol mixture. Case Stud. Therm. Eng. 2021;26:101009. doi: 10.1016/j.csite.2021.101009. DOI
Aslfattahi N., Samylingam L., Abdelrazik A.S., Arifutzzaman A., Saidur R. MXene based new class of silicone oil nanofluids for the performance improvement of concentrated photovoltaic thermal collector. Sol. Energy Mater. Sol. Cells. 2020;211:110526. doi: 10.1016/j.solmat.2020.110526. DOI
Huaxu L., Fuqiang W., Dong Z., Ziming C., Chuanxin Z., Bo L., Huijin X. Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy. 2020;194:116913. doi: 10.1016/j.energy.2020.116913. DOI
Khanjari Y., Kasaeian A.B., Pourfayaz F. Evaluating the environmental parameters affecting the performance of photovoltaic thermal system using nanofluid. Appl. Therm. Eng. 2017;115:178–187. doi: 10.1016/j.applthermaleng.2016.12.104. DOI
Maxwell J.C. A Treatise on Electricity and Magnetism. Volume 1 Clarendon Press; Oxford, UK: 1873.
Das L., Habib K., Saidur R., Aslfattahi N., Yahya S.M., Rubbi F. Improved Thermophysical Properties and Energy Efficiency of Aqueous Ionic Liquid/MXene Nanofluid in a Hybrid PV/T Solar System. Nanomaterials. 2020;10:1372. doi: 10.3390/nano10071372. PubMed DOI PMC
Nasrin R., Hasanuzzaman M., Rahim N.A. Effect of high irradiation and cooling on power, energy and performance of a PVT system. Renew. Energy. 2018;116:552–569. doi: 10.1016/j.renene.2017.10.004. DOI
Sardarabadi M., Passandideh-Fard M., Zeinali Heris S. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units) Energy. 2014;66:264–272. doi: 10.1016/j.energy.2014.01.102. DOI
Hendricks J.H.C., van Sark W.G.J.H.M. Annual performance enhancement of building integrated photovoltaic modules by applying phase change materials. Prog. Photovolt. Res. Appl. 2013;21:620–630. doi: 10.1002/pip.1240. DOI
Nasrin R., Hasanuzzaman M., Rahim N.A. Effect of high irradiation on photovoltaic power and energy. Int. J. Energy Res. 2018;42:1115–1131. doi: 10.1002/er.3907. DOI
Chakraborty S., Panigrahi P.K. Stability of nanofluid: A review. Appl. Therm. Eng. 2020;174:115259. doi: 10.1016/j.applthermaleng.2020.115259. DOI
Vandsburger L. Master’s Thesis. McGill University; Montréal, QC, Canada: 2009. Synthesis and Covalent Surface Modification of Carbon Nanotubes for Preparation of Stabilized Nanofluid Suspensions.
Ilyas S.U., Pendyala R., Narahari M., Susin L. Stability, rheology and thermal analysis of functionalized alumina- thermal oil-based nanofluids for advanced cooling systems. Energy Convers. Manag. 2017;142:215–229. doi: 10.1016/j.enconman.2017.01.079. DOI
Samylingam L., Aslfattahi N., Saidur R., Yahya S.M., Afzal A., Arifutzzaman A., Tan K.H., Kadirgama K. Thermal and energy performance improvement of hybrid PV/T system by using olein palm oil with MXene as a new class of heat transfer fluid. Sol. Energy Mater. Sol. Cells. 2020;218:110754. doi: 10.1016/j.solmat.2020.110754. DOI
Kocsis L., Herman P., Eke A. The modified Beer–Lambert law revisited. Phys. Med. Biol. 2006;51:N91–N98. doi: 10.1088/0031-9155/51/5/N02. PubMed DOI
Gulzar O., Qayoum A., Gupta R. Photo-thermal characteristics of hybrid nanofluids based on Therminol-55 oil for concentrating solar collectors. Appl. Nanosci. 2019;9:1133–1143. doi: 10.1007/s13204-018-0738-4. DOI
Wang H., Li X., Luo B., Wei K., Zeng G. The MXene/water nanofluids with high stability and photo-thermal conversion for direct absorption solar collectors: A comparative study. Energy. 2021;227:120483. doi: 10.1016/j.energy.2021.120483. DOI
Li R., Zhang L., Shi L., Wang P. MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. ACS Nano. 2017;11:3752–3759. doi: 10.1021/acsnano.6b08415. PubMed DOI
Baby T.T., Ramaprabhu S. Investigation of thermal and electrical conductivity of graphene based nanofluids. J. Appl. Phys. 2010;108:124308. doi: 10.1063/1.3516289. DOI
Shahil K.M.F., Balandin A.A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun. 2012;152:1331–1340. doi: 10.1016/j.ssc.2012.04.034. DOI
Toghraie D., Chaharsoghi V.A., Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J. Therm. Anal. Calorim. 2016;125:527–535. doi: 10.1007/s10973-016-5436-4. DOI
Ghaffarkhah A., Afrand M., Talebkeikhah M., Sehat A.A., Moraveji M.K., Talebkeikhah F., Arjmand M. On evaluation of thermophysical properties of transformer oil-based nanofluids: A comprehensive modeling and experimental study. J. Mol. Liq. 2020;300:112249. doi: 10.1016/j.molliq.2019.112249. DOI
Ilyas S.U., Pendyala R., Narahari M. Experimental investigation of natural convection heat transfer characteristics in MWCNT-thermal oil nanofluid. J. Therm. Anal. Calorim. 2019;135:1197–1209. doi: 10.1007/s10973-018-7546-7. DOI
Arthur O., Karim M.A. An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications. Renew. Sustain. Energy Rev. 2016;55:739–755. doi: 10.1016/j.rser.2015.10.065. DOI
Dardan E., Afrand M., Meghdadi Isfahani A.H. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl. Therm. Eng. 2016;109:524–534. doi: 10.1016/j.applthermaleng.2016.08.103. DOI
Wang H., Li X., Luo B. The enhanced heat transfer of diathermic oil-based alumina-doped zinc oxide nanofluids for domestic solar heating systems. J. Therm. Anal. Calorim. 2021;147:3977–3988. doi: 10.1007/s10973-021-10758-7. DOI
Nasrin R., Rahim N.A., Fayaz H., Hasanuzzaman M. Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research. Renew. Energy. 2018;121:286–300. doi: 10.1016/j.renene.2018.01.014. DOI