• This record comes from PubMed

Insight into the Investigation of Diamond Nanoparticles Suspended Therminol®55 Nanofluids on Concentrated Photovoltaic/Thermal Solar Collector

. 2022 Aug 28 ; 12 (17) : . [epub] 20220828

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Nanofluids are identified as advanced working fluids in the solar energy conversion field with superior heat transfer characteristics. This research work introduces carbon-based diamond nanomaterial and Therminol®55 oil-based nanofluids for implementation in a concentrated photovoltaic/thermal (CPV/T) solar collector. This study focuses on the experimental formulation, characterization of properties, and performance evaluation of the nanofluid-based CPV/T system. Thermo-physical (thermal conductivity, viscosity, and rheology), optical (UV-vis and FT-IR), and stability (Zeta potential) properties of the formulated nanofluids are characterized at 0.001-0.1 wt.% concentrations of dispersed particles using experimental assessment. The maximum photo-thermal energy conversion efficiency of the base fluid is improved by 120.80% at 0.1 wt.%. The thermal conductivity of pure oil is increased by adding the nanomaterial. The highest enhancement of 73.39% is observed for the TH-55/DP nanofluid. Furthermore, dynamic viscosity decreased dramatically across the temperature range studied (20-100 °C), and the nanofluid exhibited dominant Newtonian flow behavior, with viscosity remaining nearly constant up to a shear rate of 100 s-1. Numerical simulations of the nanofluid-operated CPV/T collector have disclosed substantial improvements. At a concentrated solar irradiance of 5000 W/m2 and an optimal flow rate of 3 L/min, the highest thermal and electrical energy conversion efficiency enhancements are found to be 11 and 1.8%, respectively.

See more in PubMed

Rasih R.A., Sidik N.A.C., Samion S. Recent progress on concentrating direct absorption solar collector using nanofluids. J. Therm. Anal. Calorim. 2019;137:903–922. doi: 10.1007/s10973-018-7964-6. DOI

Das L., Habib K., Irshad K., Saidur R., Algarni S., Alqahtani T. Thermo-Optical Characterization of Therminol55 Based MXene–Al2O3 Hybridized Nanofluid and New Correlations for Thermal Properties. Nanomaterials. 2022;12:1862. doi: 10.3390/nano12111862. PubMed DOI PMC

Das L., Rubbi F., Habib K., Aslfattahi N., Saidur R., Baran Saha B., Algarni S., Irshad K., Alqahtani T. State-of-the-art ionic liquid & ionanofluids incorporated with advanced nanomaterials for solar energy applications. J. Mol. Liq. 2021;336:116563. doi: 10.1016/j.molliq.2021.116563. DOI

Das L., Rubbi F., Habib K., Saidur R., Islam N., Saha B.B., Aslfattahi N., Irshad K. Hydrothermal performance improvement of an inserted double pipe heat exchanger with Ionanofluid. Case Stud. Therm. Eng. 2021;28:101533. doi: 10.1016/j.csite.2021.101533. DOI

George M., Pandey A.K., Abd Rahim N., Tyagi V.V., Shahabuddin S., Saidur R. Concentrated photovoltaic thermal systems: A component-by-component view on the developments in the design, heat transfer medium and applications. Energy Convers. Manag. 2019;186:15–41. doi: 10.1016/j.enconman.2019.02.052. DOI

Flitsanov Y., Kribus A. A cooler for dense-array CPV receivers based on metal foam. Sol. Energy. 2018;160:25–31. doi: 10.1016/j.solener.2017.12.002. DOI

Daneshazarian R., Cuce E., Cuce P.M., Sher F. Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications. Renew. Sustain. Energy Rev. 2018;81:473–492. doi: 10.1016/j.rser.2017.08.013. DOI

Rahman M.M., Hasanuzzaman M., Rahim N.A. Effects of operational conditions on the energy efficiency of photovoltaic modules operating in Malaysia. J. Clean. Prod. 2017;143:912–924. doi: 10.1016/j.jclepro.2016.12.029. DOI

Chaabane M., Charfi W., Mhiri H., Bournot P. Performance evaluation of concentrating solar photovoltaic and photovoltaic/thermal systems. Sol. Energy. 2013;98:315–321. doi: 10.1016/j.solener.2013.09.029. DOI

Lee J.H., Hwang S.G., Lee G.H. Efficiency Improvement of a Photovoltaic Thermal (PVT) System Using Nanofluids. Energies. 2019;12:3063. doi: 10.3390/en12163063. DOI

Angayarkanni S.A., Philip J. Review on thermal properties of nanofluids: Recent developments. Adv. Colloid Interface Sci. 2015;225:146–176. doi: 10.1016/j.cis.2015.08.014. PubMed DOI

Ahmad S.H.A., Saidur R., Mahbubul I.M., Al-Sulaiman F.A. Optical properties of various nanofluids used in solar collector: A review. Renew. Sustain. Energy Rev. 2017;73:1014–1030. doi: 10.1016/j.rser.2017.01.173. DOI

Sezer N., Atieh M.A., Koç M. A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technol. 2019;344:404–431. doi: 10.1016/j.powtec.2018.12.016. DOI

Li Z., Lei H., Kan A., Xie H., Yu W. Photothermal applications based on graphene and its derivatives: A state-of-the-art review. Energy. 2021;216:119262. doi: 10.1016/j.energy.2020.119262. DOI

Ghalandari M., Maleki A., Haghighi A., Safdari Shadloo M., Alhuyi Nazari M., Tlili I. Applications of nanofluids containing carbon nanotubes in solar energy systems: A review. J. Mol. Liq. 2020;313:113476. doi: 10.1016/j.molliq.2020.113476. DOI

Qiu L., Zhu N., Feng Y., Michaelides E.E., Żyła G., Jing D., Zhang X., Norris P.M., Markides C.N., Mahian O. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Phys. Rep. 2020;843:1–81. doi: 10.1016/j.physrep.2019.12.001. DOI

Parashar N., Yahya S.M. Thermophysical and rheological properties of hybrid nanofluids: A review on recent studies. J. Therm. Anal. Calorim. 2021;147:4411–4449. doi: 10.1007/s10973-021-10854-8. DOI

Arshad A., Jabbal M., Yan Y., Reay D. A review on graphene based nanofluids: Preparation, characterization and applications. J. Mol. Liq. 2019;279:444–484. doi: 10.1016/j.molliq.2019.01.153. DOI

Rubbi F., Das L., Habib K., Aslfattahi N., Saidur R., Alam S.U. A comprehensive review on advances of oil-based nanofluids for concentrating solar thermal collector application. J. Mol. Liq. 2021;338:116771. doi: 10.1016/j.molliq.2021.116771. DOI

Yu W., Xie H., Wang X., Wang X. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys. Lett. A. 2011;375:1323–1328. doi: 10.1016/j.physleta.2011.01.040. DOI

Yarmand H., Gharehkhani S., Shirazi S.F.S., Amiri A., Alehashem M.S., Dahari M., Kazi S.N. Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene nanoplatelets aqueous nanofluid in a square heated pipe. Energy Convers. Manag. 2016;114:38–49. doi: 10.1016/j.enconman.2016.02.008. DOI

Chen W.-L., Chou H.-M., Yang Y.-C. Inverse estimation of the unknown base heat flux in irregular fins made of functionally graded materials. Int. Commun. Heat Mass Transf. 2017;87:157–163. doi: 10.1016/j.icheatmasstransfer.2017.07.003. DOI

Menbari A., Alemrajabi A.A., Ghayeb Y. Investigation on the stability, viscosity and extinction coefficient of CuO–Al2O3/Water binary mixture nanofluid. Exp. Therm. Fluid Sci. 2016;74:122–129. doi: 10.1016/j.expthermflusci.2015.11.025. DOI

Deymi-Dashtebayaz M., Rezapour M. The effect of using nanofluid flow into a porous channel in the CPVT under transient solar heat flux based on energy and exergy analysis. J. Therm. Anal. Calorim. 2021;145:507–521. doi: 10.1007/s10973-020-09796-4. DOI

Alwan Sywan Alshaheen A., Kianifar A., Baradaran Rahimi A. Experimental study of using nano-(GNP, MWCNT, and SWCNT)/water to investigate the performance of a PVT module. J. Therm. Anal. Calorim. 2020;139:3549–3561. doi: 10.1007/s10973-019-08724-5. DOI

Sahin A.Z., Uddin M.A., Yilbas B.S., Al-Sharafi A. Performance enhancement of solar energy systems using nanofluids: An updated review. Renew. Energy. 2020;145:1126–1148. doi: 10.1016/j.renene.2019.06.108. DOI

Sardarabadi M., Hosseinzadeh M., Kazemian A., Passandideh-Fard M. Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints. Energy. 2017;138:682–695. doi: 10.1016/j.energy.2017.07.046. DOI

Rubbi F., Das L., Habib K., Aslfattahi N., Saidur R., Rahman M.T. State-of-the-art review on water-based nanofluids for low temperature solar thermal collector application. Sol. Energy Mater. Sol. Cells. 2021;230:111220. doi: 10.1016/j.solmat.2021.111220. DOI

Qu J., Zhang R., Wang Z., Wang Q. Photo-thermal conversion properties of hybrid CuO-MWCNT/H2O nanofluids for direct solar thermal energy harvest. Appl. Therm. Eng. 2019;147:390–398. doi: 10.1016/j.applthermaleng.2018.10.094. DOI

Hemmat Esfe M., Kamyab M.H., Valadkhani M. Application of nanofluids and fluids in photovoltaic thermal system: An updated review. Sol. Energy. 2020;199:796–818. doi: 10.1016/j.solener.2020.01.015. DOI

Nasrin R., Hasanuzzaman M., Rahim N.A. Effect of nanofluids on heat transfer and cooling system of the photovoltaic/thermal performance. Int. J. Numer. Methods Heat Fluid Flow. 2019;29:1920–1946. doi: 10.1108/HFF-04-2018-0174. DOI

Bellos E., Tzivanidis C. Investigation of a nanofluid-based concentrating thermal photovoltaic with a parabolic reflector. Energy Convers. Manag. 2019;180:171–182. doi: 10.1016/j.enconman.2018.11.008. DOI

Alous S., Kayfeci M., Uysal A. Experimental investigations of using MWCNTs and graphene nanoplatelets water-based nanofluids as coolants in PVT systems. Appl. Therm. Eng. 2019;162:114265. doi: 10.1016/j.applthermaleng.2019.114265. DOI

Rubbi F., Habib K., Saidur R., Aslfattahi N., Yahya S.M., Das L. Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as A new class of heat transfer fluids. Sol. Energy. 2020;208:124–138. doi: 10.1016/j.solener.2020.07.060. DOI

Kazem H.A., Al-Waeli A.H.A., Chaichan M.T., Sopian K. Numerical and experimental evaluation of nanofluids based photovoltaic/thermal systems in Oman: Using silicone-carbide nanoparticles with water-ethylene glycol mixture. Case Stud. Therm. Eng. 2021;26:101009. doi: 10.1016/j.csite.2021.101009. DOI

Aslfattahi N., Samylingam L., Abdelrazik A.S., Arifutzzaman A., Saidur R. MXene based new class of silicone oil nanofluids for the performance improvement of concentrated photovoltaic thermal collector. Sol. Energy Mater. Sol. Cells. 2020;211:110526. doi: 10.1016/j.solmat.2020.110526. DOI

Huaxu L., Fuqiang W., Dong Z., Ziming C., Chuanxin Z., Bo L., Huijin X. Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy. 2020;194:116913. doi: 10.1016/j.energy.2020.116913. DOI

Khanjari Y., Kasaeian A.B., Pourfayaz F. Evaluating the environmental parameters affecting the performance of photovoltaic thermal system using nanofluid. Appl. Therm. Eng. 2017;115:178–187. doi: 10.1016/j.applthermaleng.2016.12.104. DOI

Maxwell J.C. A Treatise on Electricity and Magnetism. Volume 1 Clarendon Press; Oxford, UK: 1873.

Das L., Habib K., Saidur R., Aslfattahi N., Yahya S.M., Rubbi F. Improved Thermophysical Properties and Energy Efficiency of Aqueous Ionic Liquid/MXene Nanofluid in a Hybrid PV/T Solar System. Nanomaterials. 2020;10:1372. doi: 10.3390/nano10071372. PubMed DOI PMC

Nasrin R., Hasanuzzaman M., Rahim N.A. Effect of high irradiation and cooling on power, energy and performance of a PVT system. Renew. Energy. 2018;116:552–569. doi: 10.1016/j.renene.2017.10.004. DOI

Sardarabadi M., Passandideh-Fard M., Zeinali Heris S. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units) Energy. 2014;66:264–272. doi: 10.1016/j.energy.2014.01.102. DOI

Hendricks J.H.C., van Sark W.G.J.H.M. Annual performance enhancement of building integrated photovoltaic modules by applying phase change materials. Prog. Photovolt. Res. Appl. 2013;21:620–630. doi: 10.1002/pip.1240. DOI

Nasrin R., Hasanuzzaman M., Rahim N.A. Effect of high irradiation on photovoltaic power and energy. Int. J. Energy Res. 2018;42:1115–1131. doi: 10.1002/er.3907. DOI

Chakraborty S., Panigrahi P.K. Stability of nanofluid: A review. Appl. Therm. Eng. 2020;174:115259. doi: 10.1016/j.applthermaleng.2020.115259. DOI

Vandsburger L. Master’s Thesis. McGill University; Montréal, QC, Canada: 2009. Synthesis and Covalent Surface Modification of Carbon Nanotubes for Preparation of Stabilized Nanofluid Suspensions.

Ilyas S.U., Pendyala R., Narahari M., Susin L. Stability, rheology and thermal analysis of functionalized alumina- thermal oil-based nanofluids for advanced cooling systems. Energy Convers. Manag. 2017;142:215–229. doi: 10.1016/j.enconman.2017.01.079. DOI

Samylingam L., Aslfattahi N., Saidur R., Yahya S.M., Afzal A., Arifutzzaman A., Tan K.H., Kadirgama K. Thermal and energy performance improvement of hybrid PV/T system by using olein palm oil with MXene as a new class of heat transfer fluid. Sol. Energy Mater. Sol. Cells. 2020;218:110754. doi: 10.1016/j.solmat.2020.110754. DOI

Kocsis L., Herman P., Eke A. The modified Beer–Lambert law revisited. Phys. Med. Biol. 2006;51:N91–N98. doi: 10.1088/0031-9155/51/5/N02. PubMed DOI

Gulzar O., Qayoum A., Gupta R. Photo-thermal characteristics of hybrid nanofluids based on Therminol-55 oil for concentrating solar collectors. Appl. Nanosci. 2019;9:1133–1143. doi: 10.1007/s13204-018-0738-4. DOI

Wang H., Li X., Luo B., Wei K., Zeng G. The MXene/water nanofluids with high stability and photo-thermal conversion for direct absorption solar collectors: A comparative study. Energy. 2021;227:120483. doi: 10.1016/j.energy.2021.120483. DOI

Li R., Zhang L., Shi L., Wang P. MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. ACS Nano. 2017;11:3752–3759. doi: 10.1021/acsnano.6b08415. PubMed DOI

Baby T.T., Ramaprabhu S. Investigation of thermal and electrical conductivity of graphene based nanofluids. J. Appl. Phys. 2010;108:124308. doi: 10.1063/1.3516289. DOI

Shahil K.M.F., Balandin A.A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun. 2012;152:1331–1340. doi: 10.1016/j.ssc.2012.04.034. DOI

Toghraie D., Chaharsoghi V.A., Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J. Therm. Anal. Calorim. 2016;125:527–535. doi: 10.1007/s10973-016-5436-4. DOI

Ghaffarkhah A., Afrand M., Talebkeikhah M., Sehat A.A., Moraveji M.K., Talebkeikhah F., Arjmand M. On evaluation of thermophysical properties of transformer oil-based nanofluids: A comprehensive modeling and experimental study. J. Mol. Liq. 2020;300:112249. doi: 10.1016/j.molliq.2019.112249. DOI

Ilyas S.U., Pendyala R., Narahari M. Experimental investigation of natural convection heat transfer characteristics in MWCNT-thermal oil nanofluid. J. Therm. Anal. Calorim. 2019;135:1197–1209. doi: 10.1007/s10973-018-7546-7. DOI

Arthur O., Karim M.A. An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications. Renew. Sustain. Energy Rev. 2016;55:739–755. doi: 10.1016/j.rser.2015.10.065. DOI

Dardan E., Afrand M., Meghdadi Isfahani A.H. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl. Therm. Eng. 2016;109:524–534. doi: 10.1016/j.applthermaleng.2016.08.103. DOI

Wang H., Li X., Luo B. The enhanced heat transfer of diathermic oil-based alumina-doped zinc oxide nanofluids for domestic solar heating systems. J. Therm. Anal. Calorim. 2021;147:3977–3988. doi: 10.1007/s10973-021-10758-7. DOI

Nasrin R., Rahim N.A., Fayaz H., Hasanuzzaman M. Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research. Renew. Energy. 2018;121:286–300. doi: 10.1016/j.renene.2018.01.014. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...