Antioxidative Properties and Acrylamide Content of Functional Wheat-Flour Cookies Enriched with Wild-Grown Fruits
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36080297
PubMed Central
PMC9458165
DOI
10.3390/molecules27175531
PII: molecules27175531
Knihovny.cz E-resources
- Keywords
- acrylamide, antioxidant properties, polyphenols, wheat-flour cookies, wild-grown fruits,
- MeSH
- Acrylamide analysis MeSH
- Antioxidants chemistry MeSH
- Sambucus * MeSH
- Flour analysis MeSH
- Fruit chemistry MeSH
- Polyphenols analysis MeSH
- Triticum chemistry MeSH
- Sorbus * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acrylamide MeSH
- Antioxidants MeSH
- Polyphenols MeSH
This study aimed to evaluate the impact of widely grown fruits (wild roses, elderberries, sea buckthorns, rowans, chokeberries, and hawthorns) as a functional ingredient in wheat-flour cookie formulation on antioxidative properties with a simultaneous reduction of the carcinogen-like compound acrylamide. The organoleptic features of the cookies were assessed by a panel of consumers. The following parameters were measured: chemical composition, total polyphenols, polyphenolic profile, antioxidant activity, and acrylamide content. The overall ratings of the tested cookies with the addition of chokeberries, hawthorns, sea buckthorns, and elderberries were more than satisfactory, while wild rose and rowan cookies were the most widely accepted and best rated by the panelists. The antioxidant activity of the tested cookies was 1.1−15.22 μmol trolox·g−1 dm and 2.46−26.12 μmol Fe (II)·g−1 dm as measured by the ABTS and FRAP methods, respectively. All the fruit-enriched cookies had significantly higher antioxidative properties (p < 0.05) in comparison to the control cookies, but among the fruit-enriched cookies, there were differences in the quality and quantity of particular polyphenols. The acrylamide content was significantly decreased by 59% (hawthorn), 71% (rowan), 87% (wild rose), 89% (sea buckthorn), 91% (elderberry), and 94% (chokeberry) compared with the control cookies (p < 0.05). Cookies enriched with wild-grown fruits could constitute a promising novel snack food.
See more in PubMed
Rifai L., Saleh F.A.A. Review on acrylamide in food: Occurrence, toxicity, and mitigation strategies. Int. J. Toxicol. 2020;39:93–102. PubMed
Sung W.C., Chen C.Y. Influence of cookies formulation on the formation of acrylamide. J. Food Nutr. Res. 2017;5:370–378.
Benford D., Ceccatelli S., Cottrill B., DiNovi M., Dogliotti E., Edler L., Farmer P., Fuerst P., Hoogenboom L.R., Knutsen H.K., et al. Scientific opinion on acrylamide in food. EFSA J. 2015;13:4104. doi: 10.2903/j.efsa.2015.4104. DOI
Ou J., Wang M., Zheng J., Ou S. Review. Positive and negative effects of polyphenol incorporation in baked foods. Food Chem. 2019;2984:90–99. PubMed
Gómez M., Martinez M.M. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Crit. Rev. Food Sci. Nutr. 2018;58:2119–2135. PubMed
Sidor A., Gramza-Michałowska A. Black chokeberry Aronia melanocarpa L.-A qualitative composition, phenolic profile and antioxidant potential. Molecules. 2019;24:3710. doi: 10.3390/molecules24203710. PubMed DOI PMC
Borowska S., Brzóska M.M. Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Compr. Rev. Food Sci. Food Saf. 2016;15:982–1017. PubMed
Samec D., Piljac-Żegarac J. Postharvest stability of antioxidant compounds in hawthorn and cornelian cherries at room and refrigerator temperatures-comparison with blackberries, white and red grapes. Sci. Hortic. 2011;131:15–21.
Zhang Z., Chang Q., Zhu M., Huang Y., Ho W.K.K., Chen Z.-Y. Characterization of antioxidants present in hawthorn fruits. J. Nutr. Biochem. 2001;12:144–152. PubMed
Baltacioğlu C., Velioğlu S., Karacabey E. Changes in total phenolic and flavonoid contents of rowanberry fruit during postharvest storage. J. Food Qual. 2011;34:278–283.
Hukkanen A.T., Pölönen S.S., Kärenlampi S.O., Kokko H.I. Antioxidant capacity and phenolic content of sweet rowanberries. J. Agric. Food Chem. 2006;54:112–119. doi: 10.1021/jf051697g. PubMed DOI
Polumackanycz M., Kaszuba M., Konopacka A., Marzec-Wróblewska U., Wesolowski M., Waleron K., Buciński A., Viapiana A. Phenolic composition and biological properties of wild and commercial dog rose fruits and leaves. Molecules. 2020;25:5272. doi: 10.3390/molecules25225272. PubMed DOI PMC
Lipowski J., Marszałek K., Skąpska S. Sea Buckthorn-an innovative raw material for the fruit and vegetable processing industry. J. Fruit Ornam. Plant Res. 2009;17:121–126.
Kruczek M., Świderski A., Mech-Nowak A., Król K. Antioxidant capacity of crude extracts containing carotenoids from the berries of various cultivars of sea buckthorn (Hippophae rhamnoides L.) Acta Biochim. Polon. 2012;59:135–137. doi: 10.18388/abp.2012_2189. PubMed DOI
Sidor A., Gramza-Michałowska A. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food-a review. J. Funct. Foods. 2015;18:941–958. doi: 10.1016/j.jff.2014.07.012. DOI
Młynarczyk K., Walkowiak-Tomczak D., Łysiak G.P. Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J. Funct. Foods. 2018;40:377–390. doi: 10.1016/j.jff.2017.11.025. PubMed DOI PMC
Cristea E., Ghendov-Mosanu A., Patras A., Socaciu C., Pintea A., Tudor C., Sturza R. The influence of temperature, storage conditions, pH, and ionic strength on the antioxidant activity and color parameters of rowan berry extracts. Molecules. 2021;26:3786. doi: 10.3390/molecules26133786. PubMed DOI PMC
Nazhand A., Lucarini M., Durazzo A., Zaccardelli M., Cristarella S., Souto S.B., Silva A.M., Severino P., Souto E.B., Santini A. Hawthorn (Crataegus spp.): An updated overview on its beneficial properties. Forests. 2020;11:564. doi: 10.3390/f11050564. DOI
Singh K., Singh D., Lone J.F., Bhat S., Sharma Y.P., Gairola S. Nutraceutical potential of rose hips of three wild Rosa species from Western Himalaya, India. Not. Bot. Horti Agrobot. Cluj Napoca. 2021;49:12471. doi: 10.15835/nbha49412471. DOI
Liu D., He X.Q., Wu D.T., Li H.B., Feng Y.B., Zou L., Gan R.Y. Elderberry (Sambucus nigra L.): Bioactive compounds, health functions, and applications. J. Agric. Food Chem. 2022;70:4202–4220. doi: 10.1021/acs.jafc.2c00010. PubMed DOI
Tereshchuk L., Starovoytova K., Babich O., Dyshlyuk L., Sergeeva I., Pavsky V., Ivanova S., Prosekov A. Sea buckthorn and rosehip oils with chokeberry extract to prevent hypercholesterolemia in mice caused by a high-fat diet in vivo. Nutrients. 2020;12:2941. doi: 10.3390/nu12102941. PubMed DOI PMC
Coelho L.M., Wosiacki G. Sensory evaluation of bakery products with the addition of apple pomace flour. Cienc. Tecnol. Aliment. 2010;30:582–588. doi: 10.1590/S0101-20612010000300003. DOI
Kohajdova Z., Karovicova J., Magala M., Kuchtova V. Effect of apple pomace powder addition on farinographic properties of wheat dough and Biscuits quality. Chem. Pap. 2014;68:1059–1065. doi: 10.2478/s11696-014-0567-1. DOI
Sudha M.L., Dharmesh S.M., Pynam H., Bhimangouder S.V., Eipson S.W., Somasundaram R., Nanjarajurs S.M. Antioxidant and cyto/DNA protective properties of apple pomace enriched bakery products. J. Food Sci. Technol. 2016;53:1909–1918. doi: 10.1007/s13197-015-2151-2. PubMed DOI PMC
Šarić B., Mišan A., Mandić A., Nedeljković N., Pojić M., Pestorić M., Đilas S. Valorisation of raspberry and blueberry pomace through the formulation of value-added gluten-free cookies. J. Food Sci. Technol. 2016;53:1140–1150. doi: 10.1007/s13197-015-2128-1. PubMed DOI PMC
Tańska M., Roszkowska B., Czaplicki S., Borowska E.J., Bojarska J., Dąbrowska A. Effect of fruit pomace addition on shortbread cookies to improve their physical and nutritional values. Plant Foods Hum. Nutr. 2016;71:307–313. doi: 10.1007/s11130-016-0561-6. PubMed DOI PMC
Šaponjac V.T., Ćetković G., Čanadanović-Brunet J., Pajin B., Djilas S., Petrović J., Lončarević I., Stajčić S., Vulić J. Sour cherry pomace extract encapsulated in whey and soy proteins: Incorporation in cookies. Food Chem. 2016;207:27–33. doi: 10.1016/j.foodchem.2016.03.082. PubMed DOI
Ajila C.M., Leelavathi K., Rao U.J.S.P. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J. Cereal Sci. 2008;48:319–326. doi: 10.1016/j.jcs.2007.10.001. DOI
Arun K.B., Persia F., Aswathy P.S., Chandran J., Sajeev M.S., Jayamurthy P., Nisha P. Plantain peel-a potential source of antioxidant dietary fibre for developing functional cookies. J. Food Sci. Technol. 2015;52:6355–6364. doi: 10.1007/s13197-015-1727-1. PubMed DOI PMC
Agama-Acevedo E., Islas-Hernández J.J., Pacheco-Vargas G., Osorio-Díaz P., Bello-Pérez L.A. Starch digestibility and glycemic index of cookies partially substituted with unripe banana flour. LWT-Food Sci. Technol. 2012;46:177–182. doi: 10.1016/j.lwt.2011.10.010. DOI
Turksoy S., Ozkaya B. Pumpkin and carrot pomace powders as a source of dietary fiber and their effects on the mixing properties of wheat flour dough and cookie quality. Food Sci. Technol. Res. 2011;17:545–553. doi: 10.3136/fstr.17.545. DOI
Srivastava P., Indrani D., Singh R.P. Effect of dried pomegranate (Punica granatum) peel powder (DPPP) on textural, organoleptic and nutritional characteristics of biscuits. Int. J. Food Sci. Nutr. 2014;65:827–833. doi: 10.3109/09637486.2014.937797. PubMed DOI
Younis K., Islam R., Jahan K., Kundu M., Ray A. Investigating the effect of mosambi (Citrus limetta) peel powder on physicochemical and sensory properties of cookies. Qual. Assur. Saf. Crops Foods. 2016;8:393–398. doi: 10.3920/QAS2015.0706. DOI
Kohajdova Z., Karovicova J., Jurasova M. Influence of grapefruit dietary fibre rich powder on the rheological characteristics of wheat flour dough and on biscuit quality. Acta Aliment. 2013;42:91–101. doi: 10.1556/AAlim.42.2013.1.9. DOI
Kohajdova Z., Karovicova J., Jurasova M., Kukurova K. Application of citrus dietary fibre preparations in biscuit production. J. Food Nutr. Res. 2011;50:182–190.
Arora A., Camire M.E. Performance of potato peels in muffins and cookies. Food Res. Int. 1994;27:15–22. doi: 10.1016/0963-9969(94)90173-2. DOI
Naknaen P., Itthisoponkul T., Sondee A., Angsombat N. Utilization of watermelon rind waste as a potential source of dietary fiber to improve health promoting properties and reduce glycemic index for cookie making. Food Sci. Biotechnol. 2016;25:415–424. doi: 10.1007/s10068-016-0057-z. PubMed DOI PMC
Albuquerque J.G., Duarte A.M., Conceição M.L., Aquino J.S. Integral utilization of seriguela fruit (Spondias purpurea L.) in the production of cookies. Rev. Bras. Frutic. 2016;38:1–7. doi: 10.1590/0100-29452016229. DOI
Aboshora W., Yu1 J., Omar K.A., Li Y., Hassanin H.A.M., Navich W.B., Zhang L. Preparation of doum fruit (Hyphaene thebaica) dietary fiber supplemented biscuits: Influence on dough characteristics, biscuits quality, nutritional profile and antioxidant properties. J. Food Sci. Technol. 2019;56:1328–1336. doi: 10.1007/s13197-019-03605-z. PubMed DOI PMC
Ertaş N., Aslan M. Antioxidant and physicochemical properties of cookies containing raw and roasted hemp flour. Acta Sci. Pol. Technol. Aliment. 2020;19:177–184. PubMed
Borczak B., Sikora M., Kapusta-Duch J. The effect of polyols and intensive sweeteners blends on the nutritional properties and starch digestibility of sugar-free cookies. Starch–Stärke. 2022;74:2100180. doi: 10.1002/star.202100180. DOI
Luthria D.L., Lu Y., John K.M.M. Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties. J. Funct. Foods. 2015;18:910–925. doi: 10.1016/j.jff.2015.01.001. DOI
Pérez-Jiménez J., Fulgencio S.C. Literature underestimate the actual antioxidant capacity of cereals. J. Agric. Food Chem. 2005;53:5036–5040. doi: 10.1021/jf050049u. PubMed DOI
Patras A., Brunton N.P., O’Donnell C., Tiwari B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010;21:3–11. doi: 10.1016/j.tifs.2009.07.004. DOI
Sadilova E., Carle R., Stintzing F.C. Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Mol. Nutr. Food Res. 2007;51:1461–1471. doi: 10.1002/mnfr.200700179. PubMed DOI
Sinela A.M., Mertz C., Achir N., Rawat N., Vidot K., Fulcrand H., Dornier M. Exploration of reaction mechanisms of anthocyanin degradation in a roselle extract through kinetic studies on formulated model media. Food Chem. 2017;235:67–75. doi: 10.1016/j.foodchem.2017.05.027. PubMed DOI
Matilla P., Pihlava J.M., Hellstrom J. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem. 2005;53:8290–8295. doi: 10.1021/jf051437z. PubMed DOI
Abdel-Aal E.S.M., Rabalski I. Effect of baking on free and bound phenolic acids in wholegrain bakery products. J. Cereal Sci. 2013;57:312–318. doi: 10.1016/j.jcs.2012.12.001. DOI
Ezekiel R., Singh N., Sharma S., Kaur A. Beneficial phytochemicals in potato—a review. Food Res. Int. 2013;50:487–496. doi: 10.1016/j.foodres.2011.04.025. DOI
Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallosc L., Hawkins Byrnec D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compost. Anal. 2006;19:669–675. doi: 10.1016/j.jfca.2006.01.003. DOI
Carlsen M.H., Halvorsen B.L., Holte K., Bøhn S.K., Dragland S., Sampson L., Willey C., Senoo H., Umezono Y., Sanada C., et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 2010;9:1–11. doi: 10.1186/1475-2891-9-3. PubMed DOI PMC
Jabłońska-Ryś E., Zalewska-Korona M., Kalbarczyk J. Antioxidant capacity, ascorbic acid and phenolics content in wild edible fruits. J. Fruit Ornam Plant Res. 2009;17:115–120.
Borczak B., Sikora E., Sikora M., Kapusta-Duch J., Kutyła-Kupidura E.M., Fołta M. Nutritional properties of wholemeal wheat-flour bread with an addition of selected wild grown fruits. Starch–Stärke. 2016;68:1–8. doi: 10.1002/star.201500298. DOI
Olszowy M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019;144:135–143. doi: 10.1016/j.plaphy.2019.09.039. PubMed DOI
Russo D. 2018. Flavonoids and the structure-antioxidant activity relationship. J. Pharmacogn. Nat. Prod. 2018;4:1. doi: 10.4172/2472-0992.1000e109. DOI
Grzesik M., Naparło K., Bartosz G., Sadowska-Bartosz I. Antioxidant properties of catechins: Comparison with other antioxidants. Food Chem. 2018;241:480–492. doi: 10.1016/j.foodchem.2017.08.117. PubMed DOI
Gokmen V., Senyuva H.Z. Acrylamide formation is prevented by diavalent cations during the Maillard reaction. Food Chem. 2007;103:196–203. doi: 10.1016/j.foodchem.2006.08.011. DOI
Gokmen V., Acar O.C., Koksel H., Acar J. Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chem. 2007;104:1136–1142. doi: 10.1016/j.foodchem.2007.01.008. DOI
Ahn J.S., Castle L., Clarke D.B., Lloyd A.S., Philo M.R., Speck D.R. Verification of the findings of acrylamide in heated foods. Food Addit. Contam. 2002;19:1116–1124. doi: 10.1080/0265203021000048214. PubMed DOI
Joint FAO/WHO Food Standards Programme Codex Committee . Food Additives and Contaminants. Thirty-Sixth Session. WHO; Geneva, Switzerland: 2003.
Agenda Item 6 (b). Joint FAO/WHO Food Standards Programme Codex Committee; Proceedings of the Paper Presented at: Food Additives and Contaminants: Working Document for Information and Support to the Discussion on the General Standard for Food Additives, Thirty-Eighth Session; The Hague, The Netherlands. 24–28 April 2006.
Tardiff R.G., Gargas M.L., Kirman C.R., Leigh C.M., Sweeney L.M. Estimation of safe dietary intake levels of acrylamide for humans. Food Chem. Toxicol. 2010;48:658–667. doi: 10.1016/j.fct.2009.11.048. PubMed DOI
Lindsay R.C., Jang S. Chemical intervention strategies for substantial suppression of acrylamide formation in fried potato products. Adv. Exp. Med. Biol. 2005;561:393–404. PubMed
Gokmen V., Akbudak B., Serpen A., Acar J., Turan Z.M., Eris A. Effects of controlled atmosphere storage and low-dose irradiation on potato tuber components affecting acrylamide and color formations upon frying. Eur. Food Res. Technol. 2007;224:681–687. doi: 10.1007/s00217-006-0357-2. DOI
Amrein T.M., Schonbachler B., Escher F., Amado R. Acrylamide in gingerbread: Critical factors for formation and possible ways for reduction. J. Agr. Food Chem. 2004;52:4282–4288. doi: 10.1021/jf049648b. PubMed DOI
Pedreschi F., Kaack K., Granby K. The effect of asparaginase on acrylamide formation in French fries. Food Chem. 2008;109:386–392. doi: 10.1016/j.foodchem.2007.12.057. PubMed DOI
Ciesarova Z., Kiss E., Boegl P. Impact of L-asparaginase on acrylamide content in potato products. J. Food Nutr. Res. 2006;45:141–146.
Brathen E., Kita A., Knutsen S.H., Wicklund T. Addition of glycine reduces the content of acrylamide in cereal and potato products. J. Agr. Food Chem. 2005;53:3259–3264. doi: 10.1021/jf048082o. PubMed DOI
Biedermann M., Grob K. Model studies on acrylamide formation in potato, wheat flour and corn starch; ways to reduce acrylamide contents in bakery ware. Mitt. Lebensmittel unters. Hygiene. 2003;94:406–422.
Hedegaard R.V., Granby K., Frandsen H., Thygesen Skibsted J., Horsfelt L. Acrylamide in bread. effect of prooxidants and antioxidants. Eur. Food Res. Technol. 2008;227:519–525. doi: 10.1007/s00217-007-0750-5. DOI
Açar O.C., Gökmen V. Investigation of acrylamide formation on bakery products using a crust-like model. Mol. Nutr. Food Res. 2009;53:1521–1525. doi: 10.1002/mnfr.200800585. PubMed DOI
Mehri S., Veis H.K., Hassani F.H., Hosseinzadeh H. Chrysin reduced acrylamide-induced neurotoxicity in both in vitro and in vivo assessments. Iran Biomed. J. 2014;18:101–106. PubMed PMC
Maslanka R., Zadrag-Tecza R., Kwolek K., Kwolek-Mirek M. The effect of berry juices on the level of oxidative stress in yeast cells exposed to acrylamide. J. Food Biochem. 2016;40:686–695. doi: 10.1111/jfbc.12260. DOI
Sensory Analysis-Methodology-Assessment of Food Products by Scaling Methods. Polish Committee for Standardization; Warsaw, Poland: 1998.
Sensory Analysis-Methodology-General Guidelines. Polish Committee for Standardization; Warsaw, Poland: 1998.
Sensory Analysis-General Guidelines for Choice, Training and Monitoring of the Trainee-part 2: Experts of Sensory Assessment. Polish Committee for Standardization; Warsaw, Poland: 2008.
Sensory Analysis-General Guidelines for Choice, Training and Monitoring of the Trainee-Selected Assessors. Polish Committee for Standardization; Warsaw, Poland: 2014.
AOAC . Official Methods of Analysis. 18th ed. Gaithersburg Association of Official Analytical Chemists International; Rockville, MD, USA: 2006.
Swain T., Hillis W.E. The phenolic constituens of Prunus domestica. The quantitative analysis of phenolic constituents. J. Agric. Food Chem. 1959;10:63–68. doi: 10.1002/jsfa.2740100110. DOI
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI
Benzie I.F.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power. The FRAP Assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI
Barton H., Fołta M., Zachwieja Z. Application of FRAP, ABTS and DPPH methods to estimation of antioxidant activity of food products. Med. News. 2005;74:510–513.
Ellnain-Wojtaszek M., Zgórka G. High-perfomance liquid chromatography and thin-layer chromatography of phenolic acids from Ginkgo biloba L. leaves collected within vegetative period. J. Liq. Chromatogr. Relat. Technol. 1999;22:1457–1471. doi: 10.1081/JLC-100101744. DOI
Weber N., Veberic R., Miculic-Petkovsek M., Stampar F., Koron D., Munda A., Jakopic J. Metabolite accumulation in strawberry (Fragaria x ananassa Duch.) fruits and runners in response to Colletotrichum nymphaeae infection. Physiol. Mol. Plant Pathol. 2015;92:119–129. doi: 10.1016/j.pmpp.2015.10.003. DOI
Paleologos E.K., Konotominas M.G. Determination of acrylamide and methacrylamide by normal phase high performance liquid chromatography and UV detection. J. Chromatogr. A. 2005;1077:128–135. doi: 10.1016/j.chroma.2005.04.037. PubMed DOI