Synthesis, Leishmanicidal, Trypanocidal, Antiproliferative Assay and Apoptotic Induction of (2-Phenoxypyridin-3-yl)naphthalene-1(2H)-one Derivatives
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36080388
PubMed Central
PMC9457600
DOI
10.3390/molecules27175626
PII: molecules27175626
Knihovny.cz E-zdroje
- Klíčová slova
- Leishmaniasis, Trypanosoma cruzi, apoptosis, cancer, chalcone,
- MeSH
- Chagasova nemoc * farmakoterapie MeSH
- chalkon * farmakologie MeSH
- Leishmania * MeSH
- leishmanióza * farmakoterapie MeSH
- lidé MeSH
- naftaleny terapeutické užití MeSH
- trypanocidální látky * chemie MeSH
- Trypanosoma cruzi * MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chalkon * MeSH
- naftaleny MeSH
- trypanocidální látky * MeSH
The coexistence of leishmaniasis, Chagas disease, and neoplasia in endemic areas has been extensively documented. The use of common drugs in the treatment of these pathologies invites us to search for new molecules with these characteristics. In this research, we report 16 synthetic chalcone derivatives that were investigated for leishmanicidal and trypanocidal activities as well as for antiproliferative potential on eight human cancers and two nontumor cell lines. The final compounds 8−23 were obtained using the classical base-catalyzed Claisen−Schmidt condensation. The most potent compounds as parasiticidal were found to be 22 and 23, while compounds 18 and 22 showed the best antiproliferative activity and therapeutic index against CCRF-CEM, K562, A549, and U2OS cancer cell lines and non-toxic VERO, BMDM, MRC-5, and BJ cells. In the case of K562 and the corresponding drug-resistant K562-TAX cell lines, the antiproliferative activity has shown a more significant difference for compound 19 having 10.3 times higher activity against the K562-TAX than K562 cell line. Flow cytometry analysis using K562 and A549 cell lines cultured with compounds 18 and 22 confirmed the induction of apoptosis in treated cells after 24 h. Based on the structural analysis, these chalcones represent new compounds potentially useful for Leishmania, Trypanosoma cruzi, and some cancer treatments.
Escuela de Medicina Universidad Espíritu Santo Samborondón 092301 Ecuador
Universidad ECOTEC Km 13 5 Vía Samborondón Guayaquil 092302 Ecuador
Zobrazit více v PubMed
Leishmaniasis OPS/OMS. Jan, 2022. [(accessed on 25 February 2022)]. Available online: https://www.paho.org/es/temas/leishmaniasis.
Mann S., Frasca K., Scherrer S., Henao-Martínez A., Newman S., Ramanan P., Suarez J.A. A review of Leishmaniasis: Current knowledge and future directions. Curr. Trop. Med. Rep. 2021;8:121–132. doi: 10.1007/s40475-021-00232-7. PubMed DOI PMC
Rashidi S., Fernández-Rubio C., Manzano-Román R., Mansouri R., Shafiei R., Ali-Hassanzadeh M., Barazesh A., Karimazar M., Hatam G., Nguewa P. Potential therapeutic targets shared between leishmaniasis and cancer. Parasitology. 2021;148:655–671. doi: 10.1017/S0031182021000160. PubMed DOI PMC
Chagas C. Nova tripanozomiaze humana: Estudos sobre a morfolojia e o ciclo evolutivo do schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem. Inst. Oswaldo Cruz. 1909;1:159–218. doi: 10.1590/S0074-02761909000200008. DOI
Echeverria L., Morillo C. American trypanosomiasis (Chagas disease) Infect. Dis. Clin. N. Am. 2019;33:119–134. doi: 10.1016/j.idc.2018.10.015. PubMed DOI
WHO Chagas Disease. Apr, 2021. [(accessed on 31 August 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
Lidani K.C.F., Andrade F.A., Bavia L., Damasceno F.S., Beltrame M.H., Messias-Reason I.J., Sandri T.L. Chagas disease: From discovery to a worldwide health problem. Front. Public Health. 2019;7:166. doi: 10.3389/fpubh.2019.00166. PubMed DOI PMC
World Health Organization . WHO Report on Cancer: Setting Priorities, Investing Wisely and Providing Care for All. World Health Organization; Geneva, Switzerland: 2020.
Siegel R., Miller K., Fuchs H., Jemal A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022;72:7–33. doi: 10.3322/caac.21708. PubMed DOI
Blagosklonny M.V. Immunosuppressants in cancer prevention and therapy. Oncoimmunology. 2013;2:e26961. doi: 10.4161/onci.26961. PubMed DOI PMC
Liao J.B. Cancer issue: Viruses and human cancer. Yale J. Biol. Med. 2006;79:115–122. PubMed PMC
De Martel C., Ferlay J., Franceschi S., Vignat J., Bray F., Forman D., Plummer M. Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. Lancet Oncol. 2012;13:607–615. doi: 10.1016/S1470-2045(12)70137-7. PubMed DOI
Tretina K., Gotia H.T., Mann D.J., Silva J.C. Theileria-transformed bovine leukocytes have cancer hallmarks. Trends Parasitol. 2015;31:306–314. doi: 10.1016/j.pt.2015.04.001. PubMed DOI
Nguewa P.A., Villa T.G., Notario V. Microbiome control in the prevention and early management of cancer. In: Villa T.G., Vinas M., editors. New Weapons to Control Bacterial Growth. Springer; Cham, Switzerland: 2016. pp. 219–237.
Cheeseman K., Weitzman J. Comment et pourquoi un parasite peut-il être ‘transformant’? Apports d’agents de zoonoses exotiques, Theileria spp., à l’étude du cancer. Bull. Société Pathol. Exot. 2017;110:55–60. doi: 10.1007/s13149-017-0551-4. PubMed DOI
Kopterides P., Mourtzoukou E., Skopelitis E., Tsavaris N., Falagas M. Aspects of the association between leishmaniasis and malignant disorders. Trans. R. Soc. Trop. Med. Hyg. 2007;101:1181–1189. doi: 10.1016/j.trstmh.2007.08.003. PubMed DOI
Ferro S., Palmieri C., Cavicchioli L., De Zan G., Aresu L., Benali S.L. Leishmania amastigotes in neoplastic cells of 3 nonhistiocytic canine tumors. Vet. Pathol. 2013;50:749–752. doi: 10.1177/0300985813480192. PubMed DOI
Al-Kamel M.A.N. Leishmaniasis and malignancy: A review and perspective. Clin. Skin Cancer. 2017;2:54–58. doi: 10.1016/j.clsc.2017.10.003. DOI
Sarkar D., Leung E.Y., Baguley B.C., Finlay G.J., Askarian-Amiri M.E. Epigenetic regulation in human melanoma: Past and future. Epigenetics. 2015;10:103–121. doi: 10.1080/15592294.2014.1003746. PubMed DOI PMC
Afrin F., Khan I., Hemeg H.A. Leishmania-host interactions-an epigenetic paradigm. Front. Immunol. 2019;10:492. doi: 10.3389/fimmu.2019.00492. PubMed DOI PMC
Dacher M., Tachiwana H., Horikoshi N., Kujirai T., Taguchi H., Kimura H., Kurumizaka H. Incorporation and influence of Leishmania histone H3 in chromatin. Nucleic Acids Res. 2019;47:11637–11648. doi: 10.1093/nar/gkz1040. PubMed DOI PMC
Ferreira M.S., Borges A.S. Some aspects of protozoan infections in immunocompromised patients—A Review. Mem. Inst. Oswaldo Cruz. 2002;97:443–457. doi: 10.1590/S0074-02762002000400001. PubMed DOI
Viccoa M.H., César L.I., Musacchio H.M., Bar D.O., Marcipar L.S., Bottasso O.A. Chagas disease reactivation in a patient non-Hodgkin’s lymphoma. Rev. Clin. Esp. 2014;214:e83–e85. doi: 10.1016/j.rce.2014.04.006. PubMed DOI
D’Avila Rosenthal L., Rios Petrarca C., Arndt Mesenburg M., Marreiro Villela M. Trypanosoma cruzi seroprevalence and associated risk factors in cancer patients from Southern Brazil. Rev. Soc. Bras. Med. Trop. 2016;49:768–771. doi: 10.1590/0037-8682-0202-2016. PubMed DOI
Van Tong H., Brindley P.J., Meyer C.G., Velavan T.P. Parasite infection, carcinogenesis and human malignancy. EBioMedicine. 2017;15:12–23. doi: 10.1016/j.ebiom.2016.11.034. PubMed DOI PMC
Rocha Martins P., Duarte Nascimento R., Tomaz dos Santos A., Chaves de Oliveira E., Massara Martinelli P., d’Ávila Reis D. Mast cell-nerve interaction in the colon of Trypanosoma cruzi-infected individuals with chagasic megacolon. Parasitol. Res. 2018;117:1147–1158. doi: 10.1007/s00436-018-5792-z. PubMed DOI
Garcia Duarte J., Duarte Nascimento R., Rocha Martins P., d’Ávila Reis D. Evaluation of the immunoreactivity of nerve growth factor and tropomyosin receptor kinase A in the esophagus of noninfected and infected individuals with Trypanosoma cruzi. Parasitol. Res. 2018;117:1647–1655. doi: 10.1007/s00436-018-5838-2. PubMed DOI
Soto J., Toledo J., Gutierrez P., Nicholls R., Padilla J., Engel J., Fischer C., Voss A., Berman J. Treatment of American cutaneous leishmaniasis with miltefosine, an oral agent. Clin. Infect. Dis. 2001;33:E57–E61. doi: 10.1086/322689. PubMed DOI
Agrawal V., Singh Z. Miltefosine: First oral drug for treatment of visceral leishmaniasis. Med. J. Armed Forces India. 2006;62:66–67. doi: 10.1016/S0377-1237(06)80162-0. PubMed DOI PMC
Sangshetti J., Kalam F., Kulkarni A., Rohidas A., Patilc R. Antileishmanial drug discovery: Comprehensive review of the last 10 years. RSC. Adv. 2015;5:32376–32415. doi: 10.1039/C5RA02669E. DOI
Monge-Maillo B., Loópez-Veélez R. Miltefosine for visceral and cutaneous leishmaniasis: Drug characteristics and evidence-based treatment recommendations. Clin. Infect. Dis. 2015;60:1398–1404. doi: 10.1093/cid/civ004. PubMed DOI
Singh K., Garg G., Ali V. Current therapeutics, their problems and thiol metabolism as potential drug targets in Leishmaniasis. Curr. Drug Metab. 2016;17:897–919. doi: 10.2174/1389200217666160819161444. PubMed DOI
Ribeiro V., Dias N., Paiva T., Hagström-Bex L., Nitz N., Pratesi R., Hecht M. Current trends in the pharmacological management of Chagas disease. Int. J. Parasitol. Drugs Drug Resist. 2020;12:7–17. doi: 10.1016/j.ijpddr.2019.11.004. PubMed DOI PMC
Pérez-Molina J.A., Molina I. Chagas disease. Lancet. 2018;391:82–94. doi: 10.1016/S0140-6736(17)31612-4. PubMed DOI
Njogu P.M., Chibale K. Recent developments in rationally designed multitarget antiprotozoan agents. Curr. Med. Chem. 2013;20:1715–1742. doi: 10.2174/0929867311320130010. PubMed DOI
Prati F., Uliassi E., Bolognesi M.L. Two diseases, one approach: Multitarget drug discovery in Alzheimer’s and neglected tropical diseases. MedChemComm. 2014;5:853–861. doi: 10.1039/C4MD00069B. DOI
Prati P., Bergamini C., Molina M.T., Falchi F., Cavalli A., Kaiser M., Brun R., Fato R., Bolognesi M.L. 2-Phenoxy-1,4-naphthoquinones: From a multitarget antitrypanosomal to a potential antitumor profile. J. Med. Chem. 2015;58:6422–6434. doi: 10.1021/acs.jmedchem.5b00748. PubMed DOI
Venkateswararao E., Sharma V.K., Lee K.-C., Sharma N., Park S.-H., Kim Y., Jung S.-H. A SAR study on a series of synthetic lipophilic chalcones as Inhibitor of transcription factor NF-kB. Eur. J. Med. Chem. 2012;54:379–386. doi: 10.1016/j.ejmech.2012.05.019. PubMed DOI
Zhuang C., Zhang W., Sheng C., Zhang W., Xing C., Miao Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017;117:7762–7810. doi: 10.1021/acs.chemrev.7b00020. PubMed DOI PMC
Qin H.-L., Zhang Z.-W., Lekkala R., Alsulami H., Rakesh K.P. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur. J. Med. Chem. 2010;193:112215. doi: 10.1016/j.ejmech.2020.112215. PubMed DOI
Kraus J.M., Verlinde C.L., Karimi M., Lepesheva G.I., Gelb M.H., Buckner F.S. Rational modification of a candidate cancer drug for use against chagas disease. J. Med. Chem. 2009;52:1639–1647. doi: 10.1021/jm801313t. PubMed DOI PMC
Ciccone Miguel D., Lencine Ferraz M., de Oliveira Alves R., Yokoyama-Yasunaka J., Torrecilhas A.C., Romanha A.J., Uliana S.R. The anticancer drug tamoxifen is active against Trypanosoma cruzi in vitro but ineffective in the treatment of the acute phase of Chagas disease in mice. Mem. Inst. Oswaldo Cruz. 2010;105:945–948. doi: 10.1590/S0074-02762010000700021. PubMed DOI
Beckmann S., Grevelding C.G. Imatinib makes a fatal impact on morphology, pairing stability, and survival of adult Schistosoma mansoni in vitro. Int. J. Parasitol. 2010;40:521–526. doi: 10.1016/j.ijpara.2010.01.007. PubMed DOI
Sueth-Santiago V., Decote-Ricardo D., Morrot A., Freire-de-Lima C.G., Freire Lima M.E. Challenges in the chemotherapy of Chagas disease: Looking for possibilities related to the differences and similarities between the parasite and host. World J. Biol. Chem. 2017;8:57–80. doi: 10.4331/wjbc.v8.i1.57. PubMed DOI PMC
Armando R.G., Gómez D.L., Gomez D.E. New drugs are not enough-drug repositioning in oncology: An update. Int. J. Oncol. 2020;56:651–684. doi: 10.3892/ijo.2020.4966. PubMed DOI PMC
Kim J.H., Ryu H.W., Shim J.H., Park K.H., Withers S.G. Development of new and selective Trypanosoma cruzi trans-sialidase inhibitors from sulfonamide chalcones and their derivatives. ChemBioChem. 2009;10:2475–2479. doi: 10.1002/cbic.200900108. PubMed DOI
Ahn S.H., Jang S.S., Han E.G., Lee K.J. A new synthesis of methyl 7H-dibenz [b,g] oxocin-6-carboxylates from Morita–Baylis–Hillman adducts of 2-phenoxybenzaldehydes. Synthesis. 2011;3:377–386. doi: 10.1055/s-0030-1258392. DOI
Dimmock J.R., Zello G.A., Oloo E.O., Quail W., Kraatz H.B., Perjési P., Aradi F., Takács-Novák K., Allen T.M., Santos C.L., et al. Correlations between cytotoxicity and topography of some 2-arylidenebenzocycloalkanones determined by X-ray crystallography. J. Med. Chem. 2002;45:3103–3111. doi: 10.1021/jm010559p. PubMed DOI
Charris J.E., Domínguez J.N., Gamboa N., Rodrigues J.R., Angel J.E. Synthesis and antimalarial activity of E-2-quinolinylbenzocycloalcanones. Eur. J. Med. Chem. 2005;40:875–881. doi: 10.1016/j.ejmech.2005.03.013. PubMed DOI
Choi E., Bae S., Ahn W. Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer MDA-MB-453 cells. Arch. Pharm. Res. 2008;31:1281–1285. doi: 10.1007/s12272-001-2107-0. PubMed DOI
Wei Y., Zhao X., Kariya Y., Fukata H., Teshigawara K., Uchida A. Induction of apoptosis by quercetin: Involvement of heat shock protein. Cancer Res. 1994;54:4952–4957. PubMed
Chen D., Daniel K., Chen M., Kuhn D., Landis-Piwowar K., Dou Q. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol. 2005;69:1421–1432. doi: 10.1016/j.bcp.2005.02.022. PubMed DOI
Baran I., Ganea C., Scordino A., Musumeci F., Barresi V., Tudisco S., Privitera S., Grasso R., Condorelli D., Ursu I., et al. Effects of menadione, hydrogen peroxide, and quercetin on apoptosis and delayed luminescence of human leukemia Jurkat T-cells. Cell Biochem. Biophys. 2010;58:169–179. doi: 10.1007/s12013-010-9104-1. PubMed DOI
Martínez A., Rajapakse C., Varela-Ramírez A., Lema C., Aguilera R., Sánchez-Delgado R. Arene-Ru(II)-chloroquine complexes interact with DNA, induce apoptosis on human lymphoid cell lines and display low toxicity to normal mammalian cells. J. Inorg. Biochem. 2010;104:967–977. doi: 10.1016/j.jinorgbio.2010.05.002. PubMed DOI PMC
Maso V., Calgarotto A., Franchi G., Nowill A., Filho P., Vassallo J., Olalla S. Multitarget effects of quercetin in leukemia. Cancer Prev. Res. 2014;7:1240–1250. doi: 10.1158/1940-6207.CAPR-13-0383. PubMed DOI
Santos G., Almeida M., Antunes L., Bianchi M. Effect of bixin on DNA damage and cell death induced by doxorubicin in HL60 cell line. Hum. Exp. Toxicol. 2016;35:1319–1327. doi: 10.1177/0960327116630352. PubMed DOI
Leañez J., Nuñez J., García-Marchan Y., Sojo F., Arvelo F., Rodriguez D., Buscema I., Alvarez-Aular A., Bello J., Kouznetsov V., et al. Anti-leishmanial effect of spiro dihydroquinoline-oxindoles on volumen regulation decrease and sterol biosynthesis of Leishmania braziliensis. Exp. Parasitol. 2019;198:31–38. doi: 10.1016/j.exppara.2019.01.011. PubMed DOI
Ammerman N.C., Beier-Sexton M., Azad A.F. Growth and maintenance of Vero cell lines. Curr. Protoc. Microbiol. 2008;11:A.4E.1–A.4E.7. doi: 10.1002/9780471729259.mca04es11. PubMed DOI PMC
Saint-Pierre-Chazalet M., Ben Brahim M., Le Moyec L., Bories C., Rakotomanga M., Loiseau P.M. Membrane sterol depletion impairs miltefosine action in wild-type and miltefosine-resistant Leishmania donovani promastigotes. J. Antimicrob. Chemother. 2009;64:993–1001. doi: 10.1093/jac/dkp321. PubMed DOI
Serrano-Martín X., Payares G., Mendoza-León A. Glibenclamide, a blocker of K +ATP channels, shows antileishmanial activity in experimental murine cutaneous leishmaniasis. Antimicrob. Agents Chemother. 2006;4:4214–4216. doi: 10.1128/AAC.00617-06. PubMed DOI PMC
Nosková V., Džubák P., Kuzmina G., Ludková A., Stehlik D., Trojanec R., Janošáková A., Kořínková G., Mihal V., Hajduch M. In vitro chemoresistance profile and expression/function of MDR associated proteins in resistant cell lines derived from CCRF-CEM, K562, A549 and MDA MB 231 parental cells. Neoplasma. 2002;49:418–425. PubMed
Perlíková P., Rylová G., Nauš P., Elbert T., Tloušóvá E., Bourderioux A., Slavětánská L.P., Motyka K., Doležal D., Znojek P., et al. 7-(2-Thienyl)-7-Deazaadenosine (AB61), a New Potent Nucleoside Cytostatic with a Complex Mode of Action. Mol. Cancer Ther. 2016;15:922–937. doi: 10.1158/1535-7163.MCT-14-0933. PubMed DOI
Džubák P., Gurská S., Bogdanová K., Uhríková D., Kanjaková N., Combet S., Klunda T., Kolář M., Hajdúch M., Poláková M. Antimicrobial and cytotoxic activity of (thio)alkyl hexopyranosides, nonionic glycolipid mimetics. Carbohydr. Res. 2020;488:107905. doi: 10.1016/j.carres.2019.107905. PubMed DOI
Mijares M., Ochoa M., Barroeta A., Martínez G., Suárez A., Compagnone R., Chirinos P., Avila R., De Sanctis J. Cytotoxic effets of fisturalin-3 and 11-deoxyfisturalin-3 on jurkat and U937 cell lines. Biomed. Pap. 2013;157:222–226. doi: 10.5507/bp.2012.089. PubMed DOI
Romero J., Acosta M., Gamboa N., Mijares M., De Sanctis J., Charris J. Optimization of antimalarial, and anticancer activities of (E)-methyl 2-(7-chloroquinolin-4-ylthio)-3-(4-hydroxyphenyl) acrylate. Bioorg. Med. Chem. 2018;26:815–823. doi: 10.1016/j.bmc.2017.12.022. PubMed DOI
Romero J., Acosta M., Gamboa N., Mijares M., De Sanctis J., Llovera L., Charris J. Synthesis, antimalarial, antiproliferative, and apoptotic activities of benzimidazole-5-carboxamide derivatives. Med. Chem. Res. 2019;28:13–27. doi: 10.1007/s00044-018-2258-x. DOI