Estimation of mercury emissions from the forest floor of a pine plantation during a wildfire in central Portugal
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19‒08614S
Grantová Agentura České Republiky
1066120
Grantová Agentura, Univerzita Karlova
UNCE/SCI/006
Centre for Geosphere Dynamics
PubMed
36083387
DOI
10.1007/s10661-022-10436-7
PII: 10.1007/s10661-022-10436-7
Knihovny.cz E-zdroje
- Klíčová slova
- Biomass burning, Climate change, Litter, Mercury pool, Organic horizon, Soil profiles,
- MeSH
- borovice * MeSH
- látky znečišťující půdu * analýza MeSH
- lesy MeSH
- monitorování životního prostředí MeSH
- požáry v divočině * MeSH
- půda MeSH
- rtuť * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Portugalsko MeSH
- Názvy látek
- látky znečišťující půdu * MeSH
- půda MeSH
- rtuť * MeSH
Mercury (Hg) concentrations in soils and Hg releases from soils during wildfires are not well characterised in Portugal, even though wildfire activity continues to increase around the Mediterranean. This study focused on the low to moderate severity wildfire in Pombal (Portugal) in 2019, which consumed 12.5 ha of maritime pine (Pinus pinaster Ait.). We evaluated Hg concentrations in soil profiles and Hg pools in organic horizons to assess the fire-induced Hg emissions. Moreover, impacts of the fire on forest floor properties were estimated. Four soil profiles were sampled, two at the burned area and two at a nearby unburned area. The soil profiles displayed a typical Hg distribution, with higher Hg concentrations (156 µg kg-1) in the organic horizons with a sharp decrease in the mineral layers. The bond between organic matter and Hg was evident along the profiles, with a strong correlation between TOC and Hg. Ratios of Hg/TOC in the surface layers of the soil were similar in all profiles. The mean organic Hg pool at the studied site was calculated at 10.6 g ha-1. The fire did not seem to affect the topsoil properties based on visual indicators and the lack of statistical differences (p > 0.05) among measured fire-sensitive chemical soil properties (pH, CEC, TOC, TS) between the topsoils of the burned and unburned areas. If we consider a hypothetical complete combustion of the organic layer (743 Mg) and unaffected topsoil, we estimated a release of 133 g of Hg from the burned area. The study emphasised the importance of the forest floor for Hg retention and its crucial role in Hg emissions during wildfires in a country increasingly affected by climate change.
Zobrazit více v PubMed
Amatulli, G., Camia, A., & San-Miguel-Ayanz, J. (2013). Estimating future burned areas under changing climate in the EU-Mediterranean countries. Science of the Total Environment, 450–451, 209–222. https://doi.org/10.1016/j.scitotenv.2013.02.014 DOI
Arocena, J. M., & Opio, C. (2003). Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma, 113(1–2), 1–16. https://doi.org/10.1016/S0016-7061(02)00312-9 DOI
Badía-Villas, D., González-Pérez, J. A., Aznar, J. M., Arjona-Gracia, B., & Martí-Dalmau, C. (2014). Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: Soil depth affected by fire. Geoderma, 213, 400–407. https://doi.org/10.1016/j.geoderma.2013.08.038 DOI
Baieta, R., Vieira, A. M. D., Vaňková, M., & Mihaljevič, M. (2022). Effects of forest fires on soil lead elemental contents and isotopic ratios. Geoderma, 414, 115760. https://doi.org/10.1016/J.GEODERMA.2022.115760 DOI
Ballabio, C., Jiskra, M., Osterwalder, S., Borrelli, P., Montanarella, L., & Panagos, P. (2021). A spatial assessment of mercury content in the European Union topsoil. Science of the Total Environment, 769, 144755. https://doi.org/10.1016/j.scitotenv.2020.144755 DOI
Biester, H., & Scholz, C. (1997). Determination of mercury binding forms in contaminated soils: Mercury pyrolysis versus sequential extractions. Environmental Science and Technology, 31(1), 233–239. https://doi.org/10.1021/es960369h DOI
Biester, H., Müller, G., & Schöler, H. F. (2002). Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Science of the Total Environment, 284(1–3), 191–203. https://doi.org/10.1016/S0048-9697(01)00885-3 DOI
Bishop, K., Shanley, J. B., Riscassi, A., de Wit, H. A., Eklöf, K., Meng, B., et al. (2020). Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. Science of the Total Environment, 721, 137647. https://doi.org/10.1016/j.scitotenv.2020.137647 DOI
Biswas, A., Blum, J. D., & Keeler, G. J. (2008). Mercury storage in surface soils in a central Washington forest and estimated release during the 2001 Rex Creek Fire. Science of the Total Environment, 404(1), 129–138. https://doi.org/10.1016/j.scitotenv.2008.05.043 DOI
Biswas, A., Blum, J. D., Klaue, B., & Keeler, G. J. (2007). Release of mercury from rocky mountain forest fires. Global Biogeochemical Cycles, 21(1), 1–13. https://doi.org/10.1029/2006GB002696 DOI
Bodí, M. B., Martin, D. A., Balfour, V. N., Santín, C., Doerr, S. H., Pereira, P., et al. (2014). Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth Science Reviews, 130, 103–127. https://doi.org/10.1016/j.earscirev.2013.12.007 DOI
Burke, M. P., Hogue, T. S., Ferreira, M., Mendez, C. B., Navarro, B., Lopez, S., & Jay, J. A. (2010). The effect of wildfire on soil mercury concentrations in Southern California watersheds. Water, Air, & Soil Pollution, 212(1–4), 369–385. https://doi.org/10.1007/s11270-010-0351-y DOI
Campos, I., Vale, C., Abrantes, N., Keizer, J. J., & Pereira, P. (2015). Effects of wildfire on mercury mobilisation in eucalypt and pine forests. CATENA, 131, 149–159. https://doi.org/10.1016/j.catena.2015.02.024 DOI
CAMS. (2021). Copernicus: Mediterranean region evolves into wildfire hotspot, while fire intensity reaches new records in Turkey | Copernicus. Copernicus Atmosphere Monitoring Service. https://atmosphere.copernicus.eu/copernicus-mediterranean-region-evolves-wildfire-hotspot-while-fire-intensity-reaches-new-records . Accessed 25 January 2022.
Caon, L., Vallejo, V. R., Ritsema, C. J., & Geissen, V. (2014). Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth-Science Reviews, 139, 47–58. https://doi.org/10.1016/j.earscirev.2014.09.001 DOI
Casagrande, A. (1934). Die Aräometer-Methode zur Bestimmung der Kornverteilung von Böden und anderen Materialien. Springer. https://doi.org/10.1007/978-3-642-91247-4 DOI
Certini, G., Nocentini, C., Knicker, H., Arfaioli, P., & Rumpel, C. (2011). Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma, 167–168, 148–155. https://doi.org/10.1016/j.geoderma.2011.09.005 DOI
Chas-Amil, M. L., García-Martínez, E., & Touza, J. (2020). Iberian Peninsula October 2017 wildfires: Burned area and population exposure in Galicia (NW of Spain). International Journal of Disaster Risk Reduction, 48, 101623. https://doi.org/10.1016/j.ijdrr.2020.101623 DOI
Cinnirella, S., & Pirrone, N. (2006). Spatial and temporal distributions of mercury emissions from forest fires in Mediterranean region and Russian federation. Atmospheric Environment, 40(38), 7346–7361. https://doi.org/10.1016/j.atmosenv.2006.06.051 DOI
Cinnirella, S., Pirrone, N., Allegrini, A., & Guglietta, D. (2008). Modeling mercury emissions from forest fires in the Mediterranean region. Environmental Fluid Mechanics, 8(2), 129–145. https://doi.org/10.1007/s10652-007-9048-1 DOI
Clifford, D. A., Chen, S. S., & Reznik, C. (1993). Volatilizing toxic metals from soil. Waste Management, 13(5–7), 467–479. https://doi.org/10.1016/0956-053X(93)90078-B DOI
Cunha, S., Silva, Á., Herráez, C., Pires, V., Chazarra, A., Mestre, A., et al. (2011). Iberian climate atlas — Air temperature and precipitation (1971–2000). (Agencia Estatal de Meteorología (Spain) & Instituto de Meteorologia (Portugal), Eds.). Madrid: Instituto Nacional de Meteorología.
Demers, J. D., Driscoll, C. T., Fahey, T. J., & Yavitt, J. B. (2007). Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA. Ecological Applications, 17(5), 1341–1351. https://doi.org/10.1890/06-1697.1 DOI
Du, B., Zhou, J., Zhou, L., Fan, X., & Zhou, J. (2019). Mercury distribution in the foliage and soil profiles of a subtropical forest: Process for mercury retention in soils. Journal of Geochemical Exploration, 205, 106337. https://doi.org/10.1016/j.gexplo.2019.106337 DOI
Efthimiou, N., Psomiadis, E., & Panagos, P. (2020). Fire severity and soil erosion susceptibility mapping using multi-temporal Earth observation data: The case of Mati fatal wildfire in Eastern Attica, Greece. CATENA, 187, 104320. https://doi.org/10.1016/j.catena.2019.104320 DOI
Engle, M. A., Sexauer Gustin, M., Johnson, D. W., Murphy, J. F., Miller, W. W., Walker, R. F., et al. (2006). Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire. Science of the Total Environment, 367(1), 222–233. https://doi.org/10.1016/j.scitotenv.2005.11.025 DOI
Eriksen, J., Murphy, M. D., & Schnug, E. (1998). The soil sulphur cycle. In E. Schnug (Ed.), Sulphur in agroecosystems. Nutrients in Ecosystems, vol 2 (pp. 39–73). Dordrecht: Springer. https://doi.org/10.1007/978-94-011-5100-9_2
Evelpidou, N., Tzouxanioti, M., Gavalas, T., Spyrou, E., Saitis, G., Petropoulos, A., & Karkani, A. (2021). Assessment of fire effects on surface runoff erosion susceptibility: The case of the summer 2021 forest fires in Greece. Land, 11(1), 21. https://doi.org/10.3390/land11010021 DOI
Friedli, H. R., Arellano, A. F., Cinnirella, S., & Pirrone, N. (2009). Initial estimates of mercury emissions to the atmosphere from global biomass burning. Environmental Science & Technology, 43(10), 3507–3513. https://doi.org/10.1021/es802703g DOI
Friedli, H. R., Radke, L. F., Lu, J. Y., Banic, C. M., Leaitch, W. R., & MacPherson, J. I. (2003). Mercury emissions from burning of biomass from temperate North American forests: Laboratory and airborne measurements. Atmospheric Environment, 37(2), 253–267. https://doi.org/10.1016/S1352-2310(02)00819-1 DOI
Gabriel, M. C., & Williamson, D. G. (2004). Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environmental Geochemistry and Health, 26, 421–434. DOI
Ganteaume, A., Barbero, R., Jappiot, M., & Maillé, E. (2021). Understanding future changes to fires in southern Europe and their impacts on the wildland-urban interface. Journal of Safety Science and Resilience, 2(1), 20–29. https://doi.org/10.1016/J.JNLSSR.2021.01.001 DOI
Giovannini, G., Lucchesi, S., & Giachetti, M. (1988). Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility. Soil Science, 146(4), 255–261. https://doi.org/10.1097/00010694-198810000-00006 DOI
Girona-García, A., Badía-Villas, D., Martí-Dalmau, C., Ortiz-Perpiñá, O., Mora, J. L., & Armas-Herrera, C. M. (2018). Effects of prescribed fire for pasture management on soil organic matter and biological properties: A 1-year study case in the Central Pyrenees. Science of the Total Environment, 618, 1079–1087. https://doi.org/10.1016/j.scitotenv.2017.09.127 DOI
Grigal, D. F. (2003). Mercury sequestration in forests and peatlands. Journal of Environmental Quality, 32(2), 393–405. https://doi.org/10.2134/jeq2003.3930 DOI
Hatten, J. A., & Zabowski, D. (2010). Fire severity effects on soil organic matter from a ponderosa pine forest: A laboratory study. International Journal of Wildland Fire, 19(5), 613–623. https://doi.org/10.1071/WF08048 DOI
ICNF. (2020). Áreas Ardidas. http://www2.icnf.pt/portal/florestas/dfci/inc/cartografia/areas-ardidas . Accessed 28 August 2020.
ISO. (1995). Soil quality — Determination of the potential cation exchange capacity and exchangeable cations using barium chloride solution buffered at pH = 8,1 (ISO Standard No. 13536:1995). https://www.iso.org/standard/22180.html . Accessed 9 June 2021
Johnson, D. W. (1984). Sulfur cycling in forests. Biogeochemistry, 1(1), 29–43. https://about.jstor.org/terms . Accessed 1 February 2021
Jones, A., Fernandez-Ugalde, O., & Scarpa, S. (2020). LUCAS 2015 topsoil survey. Presentation of dataset and results. EUR 30332 EN, Publications Office of the European Union: Luxembourg. https://doi.org/10.2760/616084
Knoepp, J. D., DeBano, L. F., & Neary, D. G. (2005). Soil chemistry. (D. G. Neary, K. C. Ryan, & L. F. DeBano, Eds.) Wildland fire in ecosystems: Effects of fire on soils and water (Vol. 4). Ogden, UT. Gen. Tech. Rep. RMRS-GTR-42-vol.4.
Kolka, R. K., Sturtevant, B. R., Miesel, J. R., Singh, A., Wolter, P. T., Fraver, S., et al. (2017). Emissions of forest floor and mineral soil carbon, nitrogen and mercury pools and relationships with fire severity for the Pagami Creek Fire in the Boreal Forest of northern Minnesota. International Journal of Wildland Fire, 26(4), 296. https://doi.org/10.1071/WF16128 DOI
Kumar, A., & Wu, S. (2019). Mercury pollution in the Arctic from wildfires: Source attribution for the 2000s. Environmental Science & Technology, 53(19), 11269–11275. https://doi.org/10.1021/acs.est.9b01773 DOI
Kumar, A., Wu, S., Huang, Y., Liao, H., & Kaplan, J. O. (2018). Mercury from wildfires: Global emission inventories and sensitivity to 2000–2050 global change. Atmospheric Environment, 173, 6–15. https://doi.org/10.1016/j.atmosenv.2017.10.061 DOI
Michelazzo, P. A. M., Fostier, A. H., Magarelli, G., Santos, J. C., & De Carvalho, J. A. (2010). Mercury emissions from forest burning in southern Amazon. Geophysical Research Letters, 37(9). https://doi.org/10.1029/2009GL042220
Moreira, F., Viedma, O., Arianoutsou, M., Curt, T., Koutsias, N., Rigolot, E., et al. (2011). Landscape–wildfire interactions in southern Europe: Implications for landscape management. Journal of Environmental Management, 92(10), 2389–2402. https://doi.org/10.1016/j.jenvman.2011.06.028 DOI
Navrátil, T., Hojdová, M., Rohovec, J., Penížek, V., & Vařilová, Z. (2009). Effect of fire on pools of mercury in forest soil, central Europe. Bulletin of Environmental Contamination and Toxicology, 83(2), 269–274. https://doi.org/10.1007/s00128-009-9705-9 DOI
Navrátil, T., Shanley, J. B., Rohovec, J., Dobešová, I., Matoušková, Š, Roll, M., et al. (2021). Mercury cycling during acid rain recovery at the forested Lesní potok catchment, Czech Republic. Hydrological Processes, 35(6), 1–18. https://doi.org/10.1002/hyp.14255 DOI
Núñez-Regueira, L., Rodríguez-Añón, J. A., & Proupín-Castiñeiras, J. (2000). Design of risk index maps as a tool to prevent forest fires in the humid Atlantic zone of Galicia (NW Spain). Thermochimica Acta, 349(1–2), 103–119. https://doi.org/10.1016/S0040-6031(99)00502-X DOI
Obrist, D., Johnson, D. W., Lindberg, S. E., Luo, Y., Hararuk, O., Bracho, R., et al. (2011). Mercury distribution across 14 U.S. forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils. Environmental Science & Technology, 45(9), 3974–3981. https://doi.org/10.1021/es104384m
Panagos, P., Jiskra, M., Borrelli, P., Liakos, L., & Ballabio, C. (2021). Mercury in European topsoils: Anthropogenic sources, stocks and fluxes. Environmental Research, 201, 111556. https://doi.org/10.1016/j.envres.2021.111556 DOI
Pansu, M., & Gautheyrou, J. (Eds.). (2006a). pH measurement. In Handbook of soil analysis (pp. 551–579). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-31211-6_15
Pansu, M., & Gautheyrou, J. (Eds.). (2006b). Mineral separation by selective dissolution. In Handbook of soil analysis (pp. 167–215). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-31211-6_22
Parente, J., Pereira, M. G., Amraoui, M., & Fischer, E. M. (2018). Heat waves in Portugal: Current regime, changes in future climate and impacts on extreme wildfires. Science of the Total Environment, 631–632, 534–549. https://doi.org/10.1016/J.SCITOTENV.2018.03.044 DOI
Pausas, J. G., Llovet, J., Rodrigo, A., & Vallejo, R. (2008). Are wildfires a disaster in the Mediterranean basin? — A review. International Journal of Wildland Fire, 17(6), 713. https://doi.org/10.1071/WF07151 DOI
Ping, X., Chang, Y., Liu, M., Hu, Y., Huang, W., Shi, S., et al. (2022). Carbon emission and redistribution among forest carbon pools, and change in soil nutrient content after different severities of forest fires in northeast China. Forests, 13(1), 110. https://doi.org/10.3390/f13010110 DOI
Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., et al. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10(13), 5951–5964. https://doi.org/10.5194/acp-10-5951-2010 DOI
Plaza-Álvarez, P. A., Lucas-Borja, M. E., Sagra, J., Moya, D., Alfaro-Sánchez, R., González-Romero, J., & De las Heras, J. (2018). Changes in soil water repellency after prescribed burnings in three different Mediterranean forest ecosystems. Science of the Total Environment, 644, 247–255. https://doi.org/10.1016/j.scitotenv.2018.06.364 DOI
PORDATA. (2021). Incêndios rurais e área ardida – Continente. https://www.pordata.pt/Portugal/Incêndios+rurais+e+área+ardida+–+Continente-1192-310375 . Accessed 15 October 2019
Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., et al. (2020). Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 10(1), 13790. https://doi.org/10.1038/s41598-020-70069-z DOI
Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., et al. (2005). FOREGS geochemical atlas of Europe, part 1: Background information, methodology and maps. Geological Survey of Finland, Espoo.
Sarkar, D., Essington, M. E., & Misra, K. C. (1999). Adsorption of mercury(II) by variable charge surfaces of quartz and gibbsite. Soil Science Society of America Journal, 63(6), 1626–1636. https://doi.org/10.2136/sssaj1999.6361626x DOI
Scharenbroch, B. C., Nix, B., Jacobs, K. A., & Bowles, M. L. (2012). Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geoderma, 183–184, 80–91. https://doi.org/10.1016/j.geoderma.2012.03.010 DOI
Selin, N. E. (2009). Global biogeochemical cycling of mercury: A review. Annual Review of Environment and Resources, 34(1), 43–63. https://doi.org/10.1146/annurev.environ.051308.084314 DOI
Skyllberg, U., Xia, K., Bloom, P. R., Nater, E. A., & Bleam, W. F. (2000). Binding of mercury(II) to reduced sulfur in soil organic matter along upland-peat soil transects. Journal of Environmental Quality, 29(3), 855–865. https://doi.org/10.2134/jeq2000.00472425002900030022x DOI
SNIRH. (2020). Dados de Base. https://snirh.apambiente.pt/ . Accessed 28 August 2020
Tiedemann, A. R. (1987). Combustion losses of sulfur from forest foliage and litter. Forest Science, 33(1), 216–223. https://doi.org/10.1093/FORESTSCIENCE/33.1.216 DOI
Tuhý, M., Rohovec, J., Matoušková, Š, Mihaljevič, M., Kříbek, B., Vaněk, A., et al. (2020). The potential wildfire effects on mercury remobilization from topsoils and biomass in a smelter-polluted semi-arid area. Chemosphere, 247, 125972. https://doi.org/10.1016/j.chemosphere.2020.125972 DOI
Turco, M., Jerez, S., Augusto, S., Tarín-Carrasco, P., Ratola, N., Jiménez-Guerrero, P., & Trigo, R. M. (2019). Climate drivers of the 2017 devastating fires in Portugal. Scientific Reports, 9(1), 13886. https://doi.org/10.1038/s41598-019-50281-2 DOI
Úbeda, X., Pereira, P., Outeiro, L., & Martin, D. A. (2009). Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of Cork oak (Quercus Suber). Land Degradation and Development, 20(6), 589–608. https://doi.org/10.1002/LDR.930 DOI
Ulery, A. L., Graham, R. C., & Amrhein, C. (1993). Wood-ash composition and soil ph following intense burning. Soil Science. https://doi.org/10.1097/00010694-199311000-00008 DOI
Environment, U. N. (2019). Global mercury assessment 2018. Switzerland.
Vega, J. A., Fontúrbel, T., Merino, A., Fernández, C., Ferreiro, A., & Jiménez, E. (2013). Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. Plant and Soil, 369(1–2), 73–91. https://doi.org/10.1007/s11104-012-1532-9 DOI
Wells, C. G., Campbell, R. E., Debano, L. F., Lewis, C. E., Fredriksen, R. L., E. Carlyle Franklin, et al. (1979). Effects of fire on soil: A state-of-knowledge review. Denver, CO.
Wiedinmyer, C., & Friedli, H. (2007). Mercury emission estimates from fires: An initial inventory for the United States. Environmental Science & Technology, 41(23), 8092–8098. https://doi.org/10.1021/es071289o DOI
Woodruff, L. G., Harden, J. W., Cannon, W. F., & Gough, L. P. (2001). Mercury loss from the forest floor during wildland fire. American Geophysical Union, Fall Meeting, Abstract B32B-0117. https://ui.adsabs.harvard.edu/abs/2001AGUFM.B32B0117W/abstract . Accessed 30 June 2021
Xu, J., Buck, M., Eklöf, K., Ahmed, O. O., Schaefer, J. K., Bishop, K., et al. (2019). Mercury methylating microbial communities of boreal forest soils. Scientific Reports, 9(1), 518. https://doi.org/10.1038/s41598-018-37383-z DOI
Zavala, L. M., De Celis, R., & Jordán, A. (2014). How wildfires affect soil properties. A brief review. Cuadernos de Investigación Geográfica, 40(2), 311–332. https://doi.org/10.18172/cig.2522
Zhou, J., Obrist, D., Dastoor, A., Jiskra, M., & Ryjkov, A. (2021). Vegetation uptake of mercury and impacts on global cycling. Nature Reviews Earth and Environment, 2(4), 269–284. https://doi.org/10.1038/s43017-021-00146-y DOI