Variants influencing age at diagnosis of HNF1A-MODY
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 DA006227
NIDA NIH HHS - United States
R01 MH101782
NIMH NIH HHS - United States
R01 MH101810
NIMH NIH HHS - United States
R01 MH101819
NIMH NIH HHS - United States
R01 DA033684
NIDA NIH HHS - United States
R01 MH090936
NIMH NIH HHS - United States
R01 DK055523
NIDDK NIH HHS - United States
P30 DK036836
NIDDK NIH HHS - United States
R01 MH090951
NIMH NIH HHS - United States
R01 MH101822
NIMH NIH HHS - United States
R01 DK104942
NIDDK NIH HHS - United States
R01 MH101820
NIMH NIH HHS - United States
R01 MH101825
NIMH NIH HHS - United States
R01 MH090948
NIMH NIH HHS - United States
R01 MH090941
NIMH NIH HHS - United States
HHSN261200800001C
CCR NIH HHS - United States
R01 MH090937
NIMH NIH HHS - United States
HHSN268201000029C
NHLBI NIH HHS - United States
HHSN261200800001E
NCI NIH HHS - United States
R01 MH101814
NIMH NIH HHS - United States
P30 DK020595
NIDDK NIH HHS - United States
PubMed
36104811
PubMed Central
PMC9476297
DOI
10.1186/s10020-022-00542-0
PII: 10.1186/s10020-022-00542-0
Knihovny.cz E-resources
- Keywords
- Age at disease onset, Diabetes, GWAS, HNF1A-MODY,
- MeSH
- Genome-Wide Association Study * MeSH
- Diabetes Mellitus, Type 2 * diagnosis genetics MeSH
- Phenotype MeSH
- Hepatocyte Nuclear Factor 1-alpha genetics MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Hepatocyte Nuclear Factor 1-alpha MeSH
- HNF1A protein, human MeSH Browser
BACKGROUND: HNF1A-MODY is a monogenic form of diabetes caused by variants in the HNF1A gene. Different HNF1A variants are associated with differences in age of disease onset, but other factors are postulated to influence this trait. Here, we searched for genetic variants influencing age of HNF1A-MODY onset. METHODS: Blood samples from 843 HNF1A-MODY patients from Czech Republic, France, Poland, Slovakia, the UK and the US were collected. A validation set consisted of 121 patients from the US. We conducted a genome-wide association study in 843 HNF1A-MODY patients. Samples were genotyped using Illumina Human Core arrays. The core analysis was performed using the GENESIS package in R statistical software. Kinship coefficients were estimated with the KING and PC-Relate algorithms. In the linear mixed model, we accounted for year of birth, sex, and location of the HNF1A causative variant. RESULTS: A suggestive association with age of disease onset was observed for rs2305198 (p = 2.09E-07) and rs7079157 (p = 3.96E-06) in the HK1 gene, rs2637248 in the LRMDA gene (p = 2.44E-05), and intergenic variant rs2825115 (p = 2.04E-05). Variant rs2637248 reached nominal significance (p = 0.019), while rs7079157 (p = 0.058) and rs2825115 (p = 0.068) showed suggestive association with age at diabetes onset in the validation set. CONCLUSIONS: rs2637248 in the LRMDA gene is associated with age at diabetes onset in HNF1A-MODY patients.
Center For Medical Genomics OMICRON Jagiellonian University Medical College Kraków Poland
Department of Genetics Hôpital Pitié Salpêtrière Paris France
Department of Metabolic Diseases Jagiellonian University Medical College Kraków Poland
Department of Pharmacogenomics The Ohio State University Columbus OH USA
Exeter Medical School Exeter UK
See more in PubMed
Aguet F, Brown AA, Castel SE, Davis JR, He Y, Jo B, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–213. doi: 10.1038/nature24277. PubMed DOI PMC
An P, Miljkovic I, Thyagarajan B, Kraja AT, Daw EW, Pankow JS, et al. Genome-wide association study identifies common loci influencing circulating glycated hemoglobin (HbA1c) levels in non-diabetic subjects: The Long Life Family Study (LLFS) Metabolism. 2014;63(4):461–468. doi: 10.1016/j.metabol.2013.11.018. PubMed DOI PMC
Awa WL, Thon A, Raile K, Grulich-Henn J, Meissner T, Schober E, et al. Genetic and clinical characteristics of patients with HNF1A gene variations from the German-Austrian DPV database. Eur J Endocrinol. 2011;164(4):513–520. doi: 10.1530/EJE-10-0842. PubMed DOI
Balamurugan K, Bjørkhaug L, Mahajan S, Kanthimathi S, Njølstad PR, Srinivasan N, et al. Structure–function studies of HNF1A (MODY3) gene mutations in South Indian patients with monogenic diabetes. Clin Genet. 2016;90(6):486–495. doi: 10.1111/cge.12757. PubMed DOI
Bellanné-Chantelot C, Carette C, Riveline JP, Valéro R, Gautier JF, Larger E, et al. The type and the position of HNF1A mutation modulate age at diagnosis of diabetes in patients with maturity-onset diabetes of the young (MODY)-3. Diabetes. 2008;57(2):503–508. doi: 10.2337/db07-0859. PubMed DOI
Bellanné-Chantelot C, Coste J, Ciangura C, Fonfrède M, Saint-Martin C, Bouché C, et al. High-sensitivity C-reactive protein does not improve the differential diagnosis of HNF1A-MODY and familial young-onset type 2 diabetes: a grey zone analysis. Diabetes Metab. 2016;42(1):33–37. doi: 10.1016/j.diabet.2015.02.001. PubMed DOI
Bianchi M, Magnani M. Hexokinase mutations that produce nonspherocytic hemolytic anemia. Blood Cells Mol Dis. 1995;21(1):2–8. doi: 10.1006/bcmd.1995.0002. PubMed DOI
Boj SF, Párrizas M, Maestro MA, Ferrer J. A transcription factor regulatory circuit in differentiated pancreatic cells. Proc Natl Acad Sci U S A. 2001;98(25):14481–14486. doi: 10.1073/pnas.241349398. PubMed DOI PMC
Bonnefond A, Vaxillaire M, Labrune Y, Lecoeur C, Chèvre JC, Bouatia-Naji N, et al. Genetic variant in HK1 is associated with a proanemic state and A1C but not other glycemic control-related traits. Diabetes. 2009;58(11):2687–2697. doi: 10.2337/db09-0652. PubMed DOI PMC
Colclough K, Bellanne-Chantelot C, Saint-Martin C, Flanagan SE, Ellard S. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia. Hum Mutat. 2013;34(5):669–685. doi: 10.1002/humu.22279. PubMed DOI
Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48(10):1284–1287. doi: 10.1038/ng.3656. PubMed DOI PMC
Ellard S, Colclough K. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat. 2006;27:854–869. doi: 10.1002/humu.20357. PubMed DOI
Farmaki AE, Rayner NW, Matchan A, Spiliopoulou P, Gilly A, Kariakli V, et al. The mountainous Cretan dietary patterns and their relationship with cardiovascular risk factors: the Hellenic Isolated Cohorts MANOLIS study. Public Health Nutr. 2017;20(6):1063–1074. doi: 10.1017/S1368980016003207. PubMed DOI PMC
Gantz I, Fong TM. The melanocortin system. Am J Physiol Endocrinol Metab. 2003 doi: 10.1152/ajpendo.00434.2002. PubMed DOI
Gjesing AP, Nielsen AA, Brandslund I, Christensen C, Sandbæk A, Jørgensen T, et al. Studies of a genetic variant in HK1 in relation to quantitative metabolic traits and to the prevalence of type 2 diabetes. BMC Med Genet. 2011 doi: 10.1186/1471-2350-12-99. PubMed DOI PMC
Grønskov K, Dooley CM, Østergaard E, Kelsh RN, Hansen L, Levesque MP, et al. Mutations in C10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism. Am J Hum Genet. 2013;92(3):415–421. doi: 10.1016/j.ajhg.2013.01.006. PubMed DOI PMC
Han H, Shim H, Shin D, Shim JE, Ko Y, Shin J, et al. TRRUST: A reference database of human transcriptional regulatory interactions. Sci Rep. 2015 doi: 10.1038/srep11432. PubMed DOI PMC
Hattersley AT. Maturity-onset diabetes of the young: clinical heterogeneity explained by genetic heterogeneity. Diabetic Med. 1998;15:15–24. doi: 10.1002/(SICI)1096-9136(199801)15:1<15::AID-DIA562>3.0.CO;2-M. PubMed DOI
Kavvoura F, Owen KR. Maturity onset diabetes of the young: clinical characteristics diagnosis and management. PER. 2014;10(2):234–242. PubMed
Klupa T, Warram JH, Antonellis A, Pezzolesi M, Nam M, Malecki MT, et al. Determinants of the development of diabetes (maturity-onset diabetes of the young-3) in carriers of HNF-1alpha mutations: evidence for parent-of-origin effect. Diabetes Care. 2002;25(12):2292–2301. doi: 10.2337/diacare.25.12.2292. PubMed DOI
Klupa T, Skupien J, Malecki MT. Monogenic models: What have the single gene disorders taught us? Curr Diab Rep. 2012;12:659–666. doi: 10.1007/s11892-012-0325-0. PubMed DOI PMC
Kollerits B, Lamina C, Huth C, Marques-Vidal P, Kiechl S, Seppälä I, et al. Plasma concentrations of afamin are associated with prevalent and incident type 2 diabetes: A pooled analysis in more than 20,000 individuals. Diabetes Care. 2017;40(10):1386–1393. doi: 10.2337/dc17-0201. PubMed DOI
Kronenberg F, Kollerits B, Kiechl S, Lamina C, Kedenko L, Meisinger C, et al. Plasma concentrations of afamin are associated with the prevalence and development of metabolic syndrome. Circ Cardiovasc Genet. 2014;7(6):822–829. doi: 10.1161/CIRCGENETICS.113.000654. PubMed DOI
Locke JM, Saint-Martin C, Laver TW, Patel KA, Wood AR, Sharp SA, et al. The common HNF1A variant I27L is a modifier of age at diabetes diagnosis in individuals with HNF1A-MOdy. Diabetes. 2018 doi: 10.2337/db18-0133. PubMed DOI PMC
Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–585. doi: 10.1038/ng.2653. PubMed DOI PMC
Ludwig-Słomczyńska AH, Seweryn MT, Kapusta P, Pitera E, Handelman SK, Mantaj U, et al. Mitochondrial GWAS and association of nuclear—mitochondrial epistasis with BMI in T1DM patients. BMC Med Genomics. 2020 doi: 10.1186/s12920-020-00752-7. PubMed DOI PMC
Mansour Aly D, Dwivedi OP, Prasad RB, Käräjämäki A, Hjort R, Thangam M, et al. Genome-wide association analyses highlight etiological differences underlying newly defined subtypes of diabetes. Nat Genet. 2021;53(11):1534–1542. doi: 10.1038/s41588-021-00948-2. PubMed DOI
McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48(10):1279–1283. doi: 10.1038/ng.3643. PubMed DOI PMC
O’Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, Cocca M, et al. A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet. 2014 doi: 10.1371/journal.pgen.1004234. PubMed DOI PMC
Paré G, Chasman DI, Parker AN, Nathan DM, Miletich JP, Zee RY, et al. Novel association of HK1 with glycated hemoglobin in a non-diabetic population: A genome-wide evaluation of 14,618 participants in the women’s genome health study. PLoS Genet. 2008 doi: 10.1371/journal.pgen.1000312. PubMed DOI PMC
Porter JR, Barrett TG. Monogenic syndromes of abnormal glucose homeostasis: clinical review and relevance to the understanding of the pathology of insulin resistance and β cell failure. J Med Genet. 2005;42:893–902. doi: 10.1136/jmg.2005.030791. PubMed DOI PMC
Richardson TG, Sanderson E, Palmer TM, Ala-Korpela M, Ference BA, Davey Smith G, et al. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: a multivariable Mendelian randomisation analysis, Rader DJ, editor. PLOS Med. 2020;17(3):e1003062. doi: 10.1371/journal.pmed.1003062. PubMed DOI PMC
Rijksen G, Akkerman JWN, van den Wall Bake AWL, Hofstede DP, Staal GE. Generalized hexokinase deficiency in the blood cells of a patient with nonspherocytic hemolytic anemia. Blood. 1983;61(1):12–18. doi: 10.1182/blood.V61.1.12.12. PubMed DOI
Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J, et al. Common variants at 10 genomic loci influence hemoglobin A1C levels via glycemic and nonglycemic pathways. Diabetes. 2010;59(12):3229–3239. doi: 10.2337/db10-0502. PubMed DOI PMC
Spracklen CN, Horikoshi M, Kim YJ, Lin K, Bragg F, Moon S, et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature. 2020;582(7811):240–245. doi: 10.1038/s41586-020-2263-3. PubMed DOI PMC
Tatsi C, Kanaka-Gantenbein C, Vazeou-Gerassimidi A, Chrysis D, Delis D, Tentolouris N, et al. The spectrum of HNF1A gene mutations in greek patients with MODY3: Relative frequency and identification of seven novel germline mutations. Pediatr Diabetes. 2013;14(7):526–534. doi: 10.1111/pedi.12032. PubMed DOI
Thanabalasingham G, Shah N, Vaxillaire M, Hansen T, Tuomi T, Gašperíková D, et al. A large multi-centre European study validates high-sensitivity C-reactive protein (hsCRP) as a clinical biomarker for the diagnosis of diabetes subtypes. Diabetologia. 2011;54(11):2801–2810. doi: 10.1007/s00125-011-2261-y. PubMed DOI
Thomas H, Badenberg B, Bulman M, Lemm I, Lausen J, Kind L, et al. Evidence for haploinsufficiency of the human HNF1α gene revealed by functional characterization of MODY3-associated mutations. Biol Chem. 2002;383:1691–1700. PubMed
Timsit J, Saint-Martin C, Dubois-Laforgue D, Bellanné-Chantelot C. Searching for maturity-onset diabetes of the young (MODY): When and What for? Can J Diabetes. 2016;40:455–461. doi: 10.1016/j.jcjd.2015.12.005. PubMed DOI
Vujkovic M, Keaton JM, Lynch JA, Miller DR, Zhou J, Tcheandjieu C, et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. 2020;52(7):680–691. doi: 10.1038/s41588-020-0637-y. PubMed DOI PMC
Yamagata K. Roles of HNF1α and HNF4α in pancreatic β-cells: lessons from a monogenic form of diabetes (MODY) Vitam Horm. 2014;95:407–423. doi: 10.1016/B978-0-12-800174-5.00016-8. PubMed DOI
Zhu Z, Guo Y, Shi H, Liu C-L, Panganiban RA, Chung W, et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J Allergy Clin Immunol. 2020;145(2):537–549. doi: 10.1016/j.jaci.2019.09.035. PubMed DOI PMC