Anticancer 5-arylidene-2-(4-hydroxyphenyl)aminothiazol-4(5H)-ones as tubulin inhibitors
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
CZ-OPENSCREEN
Czech Ministry of Education, Youth and Sports
LM2018130
Czech Ministry of Education, Youth and Sports
EATRIS-CZ
Czech Ministry of Education, Youth and Sports
LM2018133
Czech Ministry of Education, Youth and Sports
2020.02/0035
National Research Foundation of Ukraine
0121U100690
Ministry of Healthcare of Ukraine
PubMed
36109178
DOI
10.1002/ardp.202200419
Knihovny.cz E-zdroje
- Klíčová slova
- 2-aminothiazol-4(5H)-ones, anticancer activity, tubulin inhibitors,
- MeSH
- apoptóza MeSH
- modulátory tubulinu * farmakologie chemie MeSH
- nádorové buněčné linie MeSH
- proliferace buněk MeSH
- protinádorové látky * farmakologie chemie MeSH
- screeningové testy protinádorových léčiv MeSH
- tubulin metabolismus MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- modulátory tubulinu * MeSH
- protinádorové látky * MeSH
- tubulin MeSH
Studying the anticancer activity of 5-arylidene-2-(4-hydroxyphenyl)aminothiazol-4(5H)-ones towards cell lines of different cancer types allowed the identification of hit-compounds inhibiting the growth of daunorubicin- (CEM-DNR, IC50 = 0.32-1.28 µM) and paclitaxel-resistant (K562-TAX, IC50 = 0.21-1.23 µM) cell lines, with favorable therapeutic indexes. The studied compounds induced apoptosis and cellular proliferation in treated CCRF-CEM cells. The hit compounds were shown to induce mitotic arrest by interacting with tubulin, inhibiting its polymerization by binding to the colchicine binding site.
Zobrazit více v PubMed
D. Kaminskyy, A. Kryshchyshyn, R. Lesyk, Eur. J. Med. Chem. 2017, 140, 542. https://doi.org/10.1016/j.ejmech.2017.09.031
D. Mech, A. Kurowska, N. Trotsko, Int. J. Mol. Sci. 2021, 22, 11533. https://doi.org/10.3390/ijms222111533
R. Lesyk, J. Med. Sci. 2020, 89, e406. https://doi.org/10.20883/medical.406
R. Lesyk, J. Med. Sci. 2020, 89, e407. https://doi.org/10.20883/medical.407
D. Kaminskyy, A. Kryshchyshyn, R. Lesyk, Expert Opin. Drug Discov. 2017, 12, 1233. https://doi.org/10.1080/17460441.2017.1388370
F. Teraishi, S. Wu, J. Sasaki, L. Zhang, J. J. Davis, W. Guo, F. Dong, B. Fang, Cell. Mol. Life Sci. 2005, 19, 2382. https://doi.org/10.1007/s00018-005-5365-z
F. Teraishi, S. Wu, J. Sasaki, L. Zhang, H.-B. Zhu, J. J. Davis, B. Fang, J. Pharmacol. Exp. Ther. 2005, 314, 355. https://doi.org/10.1124/jpet.105.085654
H. Zhou, S. Wu, S. Zhai, A. Liu, Y. Sun, R. Li, Y. Zhang, S. Ekins, P. W. Swaan, B. Fang, B. Zhang, B. Yan, J. Med. Chem. 2008, 51, 1242. https://doi.org/10.1021/jm7012024
I. Subtel'na, D. Atamanyuk, E. Szymańska, K. Kieć-Kononowicz, B. Zimenkovsky, O. Vasylenko, A. Gzella, R. Lesyk, Bioorg. Med. Chem. 2010, 18, 5090. https://doi.org/10.1016/j.bmc.2010.05.073
I. Subtelna, A. Kryshchyshyn, R. Jia, A. Ringler, S. Kubicek, O. Zagrijtschuk, R. Kralovics, R. Lesyk, Arch. Pharm. 2021, 354, e2000342. https://doi.org/10.1002/ardp.202000342
V. S. Jain, D. K. Vora, C. S. Ramaa, Bioorg. Med. Chem. 2013, 21, 1599. https://doi.org/10.1016/j.bmc.2013.01.029
N. Finiuk, A. Kryshchyshyn-Dylevych, S. Holota, O. Klyuchivska, A. Kozytskiy, O. Karpenko, N. Manko, I. Ivasechko, R. Stoika, R. Lesyk, Eur. J. Med. Chem. 2022, 238, 114422. https://doi.org/10.1016/j.ejmech.2022.114422
G. Revelant, S. Huber-Villaume, S. Dunand, G. Kirsch, H. Schohn, S. Hesse, Eur. J. Med. Chem. 2015, 94, 102. https://doi.org/10.1016/j.ejmech.2015.02.053
H. Fu, X. Hou, L. Wang, Y. Dun, X. Yang, H. Fang, Bioorg. Med. Chem. Lett. 2015, 25(22), 5265. https://doi.org/10.1016/j.bmcl.2015.09.051
S. Wu, W. Guo, F. Teraishi, J. Pang, K. Kaluarachchi, L. Zhang, J. Davis, F. Dong, B. Yan, B. Fang, Med. Chem. 2006, 2, 597. https://doi.org/10.2174/1573406410602060597
K. A. Szychowski, M. L. Leja, D. V. Kaminskyy, U. E. Binduga, O. R. Pinyazhko, R. B. Lesyk, J. Gmiński, Chem.-Biol. Interact. 2017, 262, 46. https://doi.org/10.1016/j.cbi.2016.12.008
R. Jorda, D. Hendrychová, J. Voller, E. Řezníčková, T. Gucký, V. Kryštof, J. Med. Chem. 2018, 61, 9105. https://doi.org/10.1021/acs.jmedchem.8b00049
X. Teng, A. Degterev, P. Jagtap, X. Xing, S. Choi, R. Denu, J. Yuan, G. D. Cuny, Bioorg. Med. Chem. Lett. 2005, 15, 5039. https://doi.org/10.1016/j.bmcl.2005.07.077
W. Zheng, A. Degterev, E. Hsu, J. Yuan, C. Yuan, Bioorg. Med. Chem. Lett. 2008, 18, 4932. https://doi.org/10.1016/j.bmcl.2008.08.058
A. A. Geronikaki, E. P. Pitta, K. S. Liaras, Curr. Med. Chem. 2013, 20, 4460. https://doi.org/10.2174/09298673113209990143
R. Dayam, F. Aiello, J. Deng, Y. Wu, A. Garofalo, X. Chen, N. Neamati, J. Med. Chem. 2006, 49, 4526. https://doi.org/10.1021/jm051296s
R. Lesyk, B. Zimenkovsky, I. Subtelna, I. Nektegayev, G. Kazmirchuk, Acta Pol. Pharm. 2003, 6, 457.
L. Borkova, S. Gurska, P. Dzubak, R. Burianova, M. Hajduch, J. Sarek, I. Popa, M. Urban, Eur. J. Med. Chem. 2016, 121, 120. https://doi.org/10.1016/j.ejmech.2016.05.029
V. Noskova, P. Dzubak, G. Kuzmina, A. Ludkova, D. Stehlik, R. Trojanec, A. Janostakova, G. Korinkova, V. Mihal, M. Hajduch, Neoplasma 2002, 49(6), 418.
A. Bourderioux, P. Nauš, P. Perlíková, R. Pohl, I. Pichová, I. Votruba, P. Džubák, P. Konečný, M. Hajdúch, K. M. Stray, T. Wang, A. S. Ray, J. Y. Feng, G. Birkus, T. Cihlar, M. Hocek, J. Med. Chem. 2011, 54, 5498. https://doi.org/10.1021/jm2005173
E. S. Wenzel, A. Singh, In Vivo 2018, 32(1), 1. https://doi.org/10.21873/invivo.11197
Y.-T. Wang, T.-Q. Shi, H.-L. Zhu, C.-H. Liu, Bioorg. Med. Chem. 2019, 27, 502. https://doi.org/10.1016/j.bmc.2018.12.031
O. Trott, A. J. Olson, J. Comput. Chem. 2010, 31, 455. https://doi.org/10.1002/jcc.21334
G. Landrum, RDKit: Open-Source Cheminformatics Software. Ligand protonation was performed by Chemaxon cxcalc utility for pH 7.4 [JChem 19.22.0, ChemAxon] 2019. https://www.chemaxon.com/4 (accessed: August 2022).
B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 2008, 4(3), 435. https://doi.org/10.1021/ct700301q
S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, E. Lindahl, Bioinformatics 2013, 29(7), 845. https://doi.org/10.1093/bioinformatics/btt055
K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, D. E. Shaw, Proteins 2010, 78(8), 1950. https://doi.org/10.1002/prot.22711
D. A. Case, T. E. Cheatham, 3rd, T. Darden, H. Gohlke, R. Luo, K. M. Merz, Jr., A. Onufriev, C. Simmerling, B. Wang, R. J. Woods, J. Comput. Chem. 2005, 26(16), 1668. https://doi.org/10.1002/jcc.20290
C. Bouysset, S. Fiorucci, J. Cheminform. 2021, 13, 72. https://doi.org/10.1186/s13321-021-00548-6
StreaMD: the toolkit for high-throughput molecular dynamics simulations