Anticancer 5-arylidene-2-(4-hydroxyphenyl)aminothiazol-4(5H)-ones as tubulin inhibitors
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
CZ-OPENSCREEN
Czech Ministry of Education, Youth and Sports
LM2018130
Czech Ministry of Education, Youth and Sports
EATRIS-CZ
Czech Ministry of Education, Youth and Sports
LM2018133
Czech Ministry of Education, Youth and Sports
2020.02/0035
National Research Foundation of Ukraine
0121U100690
Ministry of Healthcare of Ukraine
- Keywords
- 2-aminothiazol-4(5H)-ones, anticancer activity, tubulin inhibitors,
- MeSH
- Apoptosis MeSH
- Tubulin Modulators * pharmacology chemistry MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation MeSH
- Antineoplastic Agents * pharmacology chemistry MeSH
- Drug Screening Assays, Antitumor MeSH
- Tubulin metabolism MeSH
- Binding Sites MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Tubulin Modulators * MeSH
- Antineoplastic Agents * MeSH
- Tubulin MeSH
Studying the anticancer activity of 5-arylidene-2-(4-hydroxyphenyl)aminothiazol-4(5H)-ones towards cell lines of different cancer types allowed the identification of hit-compounds inhibiting the growth of daunorubicin- (CEM-DNR, IC50 = 0.32-1.28 µM) and paclitaxel-resistant (K562-TAX, IC50 = 0.21-1.23 µM) cell lines, with favorable therapeutic indexes. The studied compounds induced apoptosis and cellular proliferation in treated CCRF-CEM cells. The hit compounds were shown to induce mitotic arrest by interacting with tubulin, inhibiting its polymerization by binding to the colchicine binding site.
See more in PubMed
D. Kaminskyy, A. Kryshchyshyn, R. Lesyk, Eur. J. Med. Chem. 2017, 140, 542. https://doi.org/10.1016/j.ejmech.2017.09.031
D. Mech, A. Kurowska, N. Trotsko, Int. J. Mol. Sci. 2021, 22, 11533. https://doi.org/10.3390/ijms222111533
R. Lesyk, J. Med. Sci. 2020, 89, e406. https://doi.org/10.20883/medical.406
R. Lesyk, J. Med. Sci. 2020, 89, e407. https://doi.org/10.20883/medical.407
D. Kaminskyy, A. Kryshchyshyn, R. Lesyk, Expert Opin. Drug Discov. 2017, 12, 1233. https://doi.org/10.1080/17460441.2017.1388370
F. Teraishi, S. Wu, J. Sasaki, L. Zhang, J. J. Davis, W. Guo, F. Dong, B. Fang, Cell. Mol. Life Sci. 2005, 19, 2382. https://doi.org/10.1007/s00018-005-5365-z
F. Teraishi, S. Wu, J. Sasaki, L. Zhang, H.-B. Zhu, J. J. Davis, B. Fang, J. Pharmacol. Exp. Ther. 2005, 314, 355. https://doi.org/10.1124/jpet.105.085654
H. Zhou, S. Wu, S. Zhai, A. Liu, Y. Sun, R. Li, Y. Zhang, S. Ekins, P. W. Swaan, B. Fang, B. Zhang, B. Yan, J. Med. Chem. 2008, 51, 1242. https://doi.org/10.1021/jm7012024
I. Subtel'na, D. Atamanyuk, E. Szymańska, K. Kieć-Kononowicz, B. Zimenkovsky, O. Vasylenko, A. Gzella, R. Lesyk, Bioorg. Med. Chem. 2010, 18, 5090. https://doi.org/10.1016/j.bmc.2010.05.073
I. Subtelna, A. Kryshchyshyn, R. Jia, A. Ringler, S. Kubicek, O. Zagrijtschuk, R. Kralovics, R. Lesyk, Arch. Pharm. 2021, 354, e2000342. https://doi.org/10.1002/ardp.202000342
V. S. Jain, D. K. Vora, C. S. Ramaa, Bioorg. Med. Chem. 2013, 21, 1599. https://doi.org/10.1016/j.bmc.2013.01.029
N. Finiuk, A. Kryshchyshyn-Dylevych, S. Holota, O. Klyuchivska, A. Kozytskiy, O. Karpenko, N. Manko, I. Ivasechko, R. Stoika, R. Lesyk, Eur. J. Med. Chem. 2022, 238, 114422. https://doi.org/10.1016/j.ejmech.2022.114422
G. Revelant, S. Huber-Villaume, S. Dunand, G. Kirsch, H. Schohn, S. Hesse, Eur. J. Med. Chem. 2015, 94, 102. https://doi.org/10.1016/j.ejmech.2015.02.053
H. Fu, X. Hou, L. Wang, Y. Dun, X. Yang, H. Fang, Bioorg. Med. Chem. Lett. 2015, 25(22), 5265. https://doi.org/10.1016/j.bmcl.2015.09.051
S. Wu, W. Guo, F. Teraishi, J. Pang, K. Kaluarachchi, L. Zhang, J. Davis, F. Dong, B. Yan, B. Fang, Med. Chem. 2006, 2, 597. https://doi.org/10.2174/1573406410602060597
K. A. Szychowski, M. L. Leja, D. V. Kaminskyy, U. E. Binduga, O. R. Pinyazhko, R. B. Lesyk, J. Gmiński, Chem.-Biol. Interact. 2017, 262, 46. https://doi.org/10.1016/j.cbi.2016.12.008
R. Jorda, D. Hendrychová, J. Voller, E. Řezníčková, T. Gucký, V. Kryštof, J. Med. Chem. 2018, 61, 9105. https://doi.org/10.1021/acs.jmedchem.8b00049
X. Teng, A. Degterev, P. Jagtap, X. Xing, S. Choi, R. Denu, J. Yuan, G. D. Cuny, Bioorg. Med. Chem. Lett. 2005, 15, 5039. https://doi.org/10.1016/j.bmcl.2005.07.077
W. Zheng, A. Degterev, E. Hsu, J. Yuan, C. Yuan, Bioorg. Med. Chem. Lett. 2008, 18, 4932. https://doi.org/10.1016/j.bmcl.2008.08.058
A. A. Geronikaki, E. P. Pitta, K. S. Liaras, Curr. Med. Chem. 2013, 20, 4460. https://doi.org/10.2174/09298673113209990143
R. Dayam, F. Aiello, J. Deng, Y. Wu, A. Garofalo, X. Chen, N. Neamati, J. Med. Chem. 2006, 49, 4526. https://doi.org/10.1021/jm051296s
R. Lesyk, B. Zimenkovsky, I. Subtelna, I. Nektegayev, G. Kazmirchuk, Acta Pol. Pharm. 2003, 6, 457.
L. Borkova, S. Gurska, P. Dzubak, R. Burianova, M. Hajduch, J. Sarek, I. Popa, M. Urban, Eur. J. Med. Chem. 2016, 121, 120. https://doi.org/10.1016/j.ejmech.2016.05.029
V. Noskova, P. Dzubak, G. Kuzmina, A. Ludkova, D. Stehlik, R. Trojanec, A. Janostakova, G. Korinkova, V. Mihal, M. Hajduch, Neoplasma 2002, 49(6), 418.
A. Bourderioux, P. Nauš, P. Perlíková, R. Pohl, I. Pichová, I. Votruba, P. Džubák, P. Konečný, M. Hajdúch, K. M. Stray, T. Wang, A. S. Ray, J. Y. Feng, G. Birkus, T. Cihlar, M. Hocek, J. Med. Chem. 2011, 54, 5498. https://doi.org/10.1021/jm2005173
E. S. Wenzel, A. Singh, In Vivo 2018, 32(1), 1. https://doi.org/10.21873/invivo.11197
Y.-T. Wang, T.-Q. Shi, H.-L. Zhu, C.-H. Liu, Bioorg. Med. Chem. 2019, 27, 502. https://doi.org/10.1016/j.bmc.2018.12.031
O. Trott, A. J. Olson, J. Comput. Chem. 2010, 31, 455. https://doi.org/10.1002/jcc.21334
G. Landrum, RDKit: Open-Source Cheminformatics Software. Ligand protonation was performed by Chemaxon cxcalc utility for pH 7.4 [JChem 19.22.0, ChemAxon] 2019. https://www.chemaxon.com/4 (accessed: August 2022).
B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 2008, 4(3), 435. https://doi.org/10.1021/ct700301q
S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, E. Lindahl, Bioinformatics 2013, 29(7), 845. https://doi.org/10.1093/bioinformatics/btt055
K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, D. E. Shaw, Proteins 2010, 78(8), 1950. https://doi.org/10.1002/prot.22711
D. A. Case, T. E. Cheatham, 3rd, T. Darden, H. Gohlke, R. Luo, K. M. Merz, Jr., A. Onufriev, C. Simmerling, B. Wang, R. J. Woods, J. Comput. Chem. 2005, 26(16), 1668. https://doi.org/10.1002/jcc.20290
C. Bouysset, S. Fiorucci, J. Cheminform. 2021, 13, 72. https://doi.org/10.1186/s13321-021-00548-6
StreaMD: the toolkit for high-throughput molecular dynamics simulations