Assessment of delta-9-tetrahydrocannabinol (THC) in saliva and blood after oral administration of medical cannabis with respect to its effect on driving abilities
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu klinické zkoušky, časopisecké články
PubMed
36121021
PubMed Central
PMC9841804
DOI
10.33549/physiolres.934907
PII: 934907
Knihovny.cz E-zdroje
- MeSH
- agonisté kanabinoidních receptorů MeSH
- aplikace orální MeSH
- Cannabis * MeSH
- chronická bolest * MeSH
- lidé MeSH
- marihuana pro léčebné účely * MeSH
- sliny MeSH
- tetrahydrokanabinol MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- Názvy látek
- agonisté kanabinoidních receptorů MeSH
- marihuana pro léčebné účely * MeSH
- tetrahydrokanabinol MeSH
Medical cannabis has recently been legalized in many countries, and it is currently prescribed with increasing frequency, particularly for treatment of chronic pain resistant to conventional therapy. The psychoactive substance delta-9-tetrahydro-cannabinol (THC) contained in cannabis may affect driving abilities. Therefore, the aims of this study (open-label, monocentric, nonrandomized) were to evaluate blood and saliva concentrations of THC after oral administration of medical cannabis and to assess the time needed for THC levels to decline below a value ensuring legal driving. The study involved 20 patients with documented chronic pain using long-term medical cannabis therapy. They were divided into two groups and treated with two different doses of cannabis in the form of gelatin capsules (62.5 mg or 125 mg). In all patients, the amount of THC was assessed in saliva and in blood at pre-defined time intervals before and after administration. THC levels in saliva were detected at zero in all subjects following administration of both doses at all-time intervals after administration. Assessment of THC levels in blood, however, showed positive findings in one subject 9 h after administration of the lower dose and in one patient who had been given a higher dose 7 h after administration. Our finding suggested that for an unaffected ability to drive, at least 9-10 h should elapse from the last cannabis use.
Zobrazit více v PubMed
Abuhasira R, Shbiro L, Landschaft Y. Medical use of cannabis and cannabinoids containing products - Regulations in Europe and North America. Eur J Intern Med. 2018;49:2–6. doi: 10.1016/j.ejim.2018.01.001. PubMed DOI
Landa L, Jurica J, Sliva J, Pechackova M, Demlova R. Medical cannabis in the treatment of cancer pain and spastic conditions and options of drug delivery in clinical practice. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2018;162:18–25. doi: 10.5507/bp.2018.007. PubMed DOI
Aizpurua-Olaizola O, Soydaner U, Öztürk E, Schibano D, Simsir Y, Navarro P, Etxebarria N, Usobiaga A. Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes. J Nat Prod. 2016;79:324–331. doi: 10.1021/acs.jnatprod.5b00949. PubMed DOI
Landa L, Sulcova A, Gbelec P. The use of cannabinoids in animals and therapeutic implications for veterinary medicine: a review. Vet Med-Czech. 2016;61:111–122. doi: 10.17221/8762-VETMED. DOI
Bisogno T, Hanus L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, Moriello AS, Davis JB, Mechoulam R, di Marzo V. Molecular targets for cannabidiol and its synthetic analogues: Effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol. 2001;134:845–852. doi: 10.1038/sj.bjp.0704327. PubMed DOI PMC
Bridgeman MB, Abazia DT. Medicinal Cannabis: History, pharmacology, and implications for the acute care setting. P T. 2017;42:180–188. PubMed PMC
Storozhuk MV, Zholos AV. TRP Channels as novel targets for endogenous ligands: Focus on endocannabinoids and nociceptive signalling. Curr Neuropharmacol. 2018;16:137–150. doi: 10.2174/1570159X15666170424120802. PubMed DOI PMC
Tang XL, Wang Y, Li DL, Luo J, Liu MY. Orphan G protein-coupled receptors (GPCRs): biological functions and potential drug targets. Acta Pharmacol Sin. 2012;33:363–371. doi: 10.1038/aps.2011.210. PubMed DOI PMC
Abdel-Salam OM, Salem NA, El-Sayed El-Shamarka M, Al-Said AN, Seid HJ, El-Khyat ZA. Cannabis-induced impairment of learning and memory: effect of different nootropic drugs. EXCLI J. 2013;12:193–214. PubMed PMC
Grotenhermen F. Cannabinoids and the endocannabinoid system. Cannabinoids. 2006;1:10–14.
Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P, Bouaboula M, Shire D, Le FG, Casellas P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem. 1995;232:54–61. doi: 10.1111/j.1432-1033.1995.tb20780.x. PubMed DOI
Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther. 1997;74:129–180. doi: 10.1016/S0163-7258(97)82001-3. PubMed DOI
Van Sickle MD, Oland LD, Mackie K, Davison JS, Sharkey KA. Delta9-tetrahydrocannabinol selectively acts on CB1 receptors in specific regions of dorsal vagal complex to inhibit emesis in ferrets. Am J Physiol Gastrointest Liver Physiol. 2003;285:G566–G576. doi: 10.1152/ajpgi.00113.2003. PubMed DOI
Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br J Pharmacol. 2008;153:199–215. doi: 10.1038/sj.bjp.0707442. PubMed DOI PMC
Peng J, Fan M, An C, Ni F, Huang W, Luo J. A narrative review of molecular mechanism and therapeutic effect of cannabidiol (CBD) Basic Clin Pharmacol Toxicol. 2022;130:439–456. doi: 10.1111/bcpt.13710. PubMed DOI
Grotenhermen F, Muller-Vahl K. The therapeutic potential of cannabis and cannabinoids. Dtsch Arztebl Int. 2012;109:495–501. doi: 10.3238/arztebl.2012.0495. PubMed DOI PMC
Verstraete AG, Legrand S-A. Drug Use, Impaired Driving and Traffic Accidents. 2nd Ed. Luxembourg: European Monitoring Centre for Drugs and Drug Addiction (EMCDDA); 2014. p. 156.
Mechoulam R, Parker LA. The endocannabinoid system and the brain. Annu Rev Psychol. 2013;64:21–47. doi: 10.1146/annurev-psych-113011-143739. PubMed DOI
Huestis M. Human cannabinoid pharmacokinetics. Chem Biodivers. 2007;4:1770–1804. doi: 10.1002/cbdv.200790152. PubMed DOI PMC
Zendulka O, Dovrtelova G, Noskova K, Turjap M, Sulcova A, Hanus LO, Jurica J. Cannabinoids and cytochrome P450 interactions. Curr Drug Metab. 2016;17:206–226. doi: 10.2174/1389200217666151210142051. PubMed DOI
Ahmed A, van den Elsen G, Colbers A, van der Marck M, Burger D, Feuth T, Rikkert M, Kramers C. Safety and pharmacokinetics of oral delta-9-tetrahydrocannabinol in healthy older subjects: A randomized controlled trial. Eur Neuropsychopharmacol. 2014;24:1475–1482. doi: 10.1016/j.euroneuro.2014.06.007. PubMed DOI
Klumpers LE, Beumer TL, van Hasselt JG, Lipplaa A, Karger LB, Kleinloog HD, Freijer JI, de Kam ML, van Gerven JM. Novel Δ(9)-tetrahydrocannabinol formulation Namisol® has beneficial pharmacokinetics and promising pharmacodynamic effects. Br J Clin Pharmacol. 2012;74:42–53. doi: 10.1111/j.1365-2125.2012.04164.x. PubMed DOI PMC
Vandrey R, Herrmann ES, Mitchell JM, Bigelow GE, Flegel R, LoDico C, Cone EJ. Pharmacokinetic profile of oral cannabis in humans: Blood and oral fluid disposition and relation to pharmacodynamic outcomes. J Anal Toxicol. 2017;41:83–99. doi: 10.1093/jat/bkx012. PubMed DOI PMC
Gaston TE, Friedman D. Pharmacology of cannabinoids in the treatment of epilepsy. Epilepsy Behav. 2017;70:313–318. doi: 10.1016/j.yebeh.2016.11.016. PubMed DOI
Karschner EL, Schwilke EW, Lowe RH, Darwin WD, Herning RI, Cadet JL, Huestis MA. Implications of plasma Delta9-tetrahydrocannabinol, 11-hydroxy-THC, and 11-nor-9-carboxy-THC concentrations in chronic cannabis smokers. J Anal Toxicol. 2009;33:469–477. doi: 10.1093/jat/33.8.469. PubMed DOI PMC
Lucas CJ, Galettis P, Schneider J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br J Clin Pharmacol. 2018;84:2477–2482. doi: 10.1111/bcp.13710. PubMed DOI PMC
Vandrey R, Herrmann ES, Mitchell JM, Bigelow GE, Flegel R, LoDico C, Cone EJ. Pharmacokinetic profile of oral cannabis in humans: Blood and oral fluid disposition and relation to pharmacodynamic outcomes. J Anal Toxicol. 2017;41:83–99. doi: 10.1093/jat/bkx012. PubMed DOI PMC
Ahmed AI, van den Elsen GA, Colbers A, van der Marck MA, Burger DM, Feuth TB, Rikkert MG, Kramers C. Safety and pharmacokinetics of oral delta-9-tetrahydrocannabinol in healthy older subjects: A randomized controlled trial. Eur Neuropsychopharmacol. 2014;24:1475–1482. doi: 10.1016/j.euroneuro.2014.06.007. PubMed DOI
Klumpers LE, Beumer TL, van Hasselt JG, Lipplaa A, Karger LB, Kleinloog HD, Freijer JI, de Kam ML, van Gerven JM. Novel Δ(9)-tetrahydrocannabinol formulation Namisol® has beneficial pharmacokinetics and promising pharmacodynamic effects. Br J Clin Pharmacol. 2012;74:42–53. doi: 10.1111/j.1365-2125.2012.04164.x. PubMed DOI PMC
GWPharma. SmPC: Sativex. SUKL; 2020.
Marsot A, Audebert C, Attolini L, Lacarelle B, Micallef J, Blin O. Population pharmacokinetics model of THC used by pulmonary route in occasional cannabis smokers. J Pharmacol Toxicol Methods. 2017;85:49–54. doi: 10.1016/j.vascn.2017.02.003. PubMed DOI
Grotenhermen F, Leson G, Berghaus G, Drummer OH, Krüger HP, Longo M, Moskowitz H, et al. Developing limits for driving under cannabis. Addiction. 2007;102:1910–1917. doi: 10.1111/j.1360-0443.2007.02009.x. PubMed DOI
Crean RD, Crane NA, Mason BJ. An evidence based review of acute and long-term effects of cannabis use on executive cognitive functions. J Addict Med. 2011;5:1–8. doi: 10.1097/ADM.0b013e31820c23fa. PubMed DOI PMC
Bondallaz P, Favrat B, Chtioui H, Fornari E, Maeder P, Giroud C. Cannabis and its effects on driving skills. Forensic Sci Int. 2016;268:92–102. doi: 10.1016/j.forsciint.2016.09.007. PubMed DOI
Martin JL, Gadegbeku B, Wu D, Viallon V, Laumon B. Cannabis, alcohol and fatal road accidents. PLoS One. 2017;12:e0187320. doi: 10.1371/journal.pone.0187320. PubMed DOI PMC
Arkell TR, Vinckenbosch F, Kevin RC, Theunissen EL, McGregor IS, Ramaekers JG. Effect of cannabidiol and Δ9-tetrahydrocannabinol on driving performance a randomized clinical trial. JAMA. 2020;324:2177–2186. doi: 10.1001/jama.2020.21218. PubMed DOI PMC
Jewett A, Peterson AB, Sauber-Schatz EK. Exploring substance use and impaired driving among adults aged 21 years and older in the US, 2015. Traffic Inj Prev. 2018;19:693–700. doi: 10.1080/15389588.2018.1479525. PubMed DOI PMC
Ortiz-Peregrina S, Ortiz C, Castro-Torres JJ, Jimenez JR, Anera RG. Effects of smoking Cannabis on visual function and driving performance. A driving-simulator based study. Int J Environ Res Public Health. 2020;17:9033. doi: 10.3390/ijerph17239033. PubMed DOI PMC
Sevigny EL. Cannabis and driving ability. Curr Opin Psychol. 2021;38:75–79. doi: 10.1016/j.copsyc.2021.03.003. PubMed DOI PMC
Hryhorowicz S, Walczak M, Zakerska-Banaszak O, Słomski R, Skrzypczak-Zielińska M. Pharmacogenetics of cannabinoids. Eur J Drug Metab Pharmacokinet. 2018;43:1–12. doi: 10.1007/s13318-017-0416-z. PubMed DOI PMC
Neavyn MJ, Blohm E, Babu KM, Bird SB. Medical marijuana and driving: A review. J Med Toxicol. 2014;10:269–279. doi: 10.1007/s13181-014-0393-4. PubMed DOI PMC
College of Family Physicians of Canada. Authorizing Dried Cannabis for Chronic Pain or Anxiety. Preliminary Guidance from the College of Family Physicians of Canada; Mississauga: 2014.
Dassanayake T, Michie P, Carter G, Jones A. Effects of benzodiazepines, antidepressants and opioids on driving: a systematic review and meta-analysis of epidemiological and experimental evidence. Drug Saf. 2011;34:125–156. doi: 10.2165/11539050-000000000-00000. PubMed DOI
Hansen RN, Boudreau DM, Ebel BE, Grossman DC, Sullivan SD. Sedative hypnotic medication use and the risk of motor vehicle crash. Am J Public Health. 2015;105:e64–e69. doi: 10.2105/AJPH.2015.302723. PubMed DOI PMC
Herrera-Gomez F, Gutierrez-Abejon E, Alvarez FJ. Antipsychotics in the general population and the driver population: comparisons from a population-based registry study. Int Clin Psychopharmacol. 2019;34:184–188. doi: 10.1097/YIC.0000000000000263. PubMed DOI
Ramaekers J. Antidepressants and driving ability. Eur Psychiatry. 2017;41(Suppl 1):S50–S51. doi: 10.1016/j.eurpsy.2017.01.214. DOI
Wickens CM, Mann RE, Brands B, Ialomiteanu AR, Fischer B, Watson TM, Matheson J, Stoduto G, Rehm J. Driving under the influence of prescription opioids: Self-reported prevalence and association with collision risk in a large Canadian jurisdiction. Accid Anal Prev. 2018;121:14–19. doi: 10.1016/j.aap.2018.08.026. PubMed DOI
Aviram J, Pud D, Gershoni T, Schiff-Keren B, Ogintz M, Vulfsons S, Yashar T, et al. Medical cannabis treatment for chronic pain: Outcomes and prediction of response. Eur J Pain. 2021;25:359–374. doi: 10.1002/ejp.1675. PubMed DOI
Haroutounian S, Ratz Y, Ginosar Y, Furmanov K, Saifi F, Meidan R, Davidson E. The effect of medicinal cannabis on pain and quality-of-life outcomes in chronic pain: A prospective open-label study. Clin J Pain. 2016;32:1036–1043. doi: 10.1097/AJP.0000000000000364. PubMed DOI
Safakish R, Ko G, Salimpour V, Hendin B, Sohanpal I, Loheswaran G, Yoon SYR. Medical cannabis for the management of pain and quality of life in chronic pain patients: A prospective observational study. Pain Med. 2020;21:3073–3086. doi: 10.1093/pm/pnaa163. PubMed DOI
Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet. 2003;42:327–360. doi: 10.2165/00003088-200342040-00003. PubMed DOI