Utility of fatty acid profile and in vitro immune cell activation for chemical and biological standardization of Arthrospira/Limnospira
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, N.I.H., Extramural
Grant support
U19 AT010838
NCCIH NIH HHS - United States
U19AT010838
NIH HHS - United States
PubMed
36123360
PubMed Central
PMC9485217
DOI
10.1038/s41598-022-19590-x
PII: 10.1038/s41598-022-19590-x
Knihovny.cz E-resources
- MeSH
- Humans MeSH
- Fatty Acids analysis MeSH
- Reference Standards MeSH
- Spirulina * MeSH
- Toll-Like Receptor 1 MeSH
- Toll-Like Receptor 2 MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Fatty Acids MeSH
- Toll-Like Receptor 1 MeSH
- Toll-Like Receptor 2 MeSH
Commercially cultivated Limnospira (species formerly classified to genus Arthrospira) is a popular food/supplement consumed by millions of people worldwide for health benefits. The objective of the current research was to advance the standardization technology for Limnospira. Quantitative methods were established to detect fatty acids as potential chemical markers and immune-enhancing activity. Analysis of 20 different batches of biomass obtained from one commercial grower demonstrated that there was a statistically significant relationship between the sum of two fatty acids (linoleic and γ-linolenic) and Toll-like receptor (TLR)2/TLR1-dependent activation (R2 = 0.48, p = 0.0007). Investigation of 12 biomass samples sourced from growers in 10 different countries demonstrated that fatty acid content was again significantly correlated with biological activity (R2 = 0.72, p = 0.0005) and the content of fatty acids varied by twofold and activity by 12.5-fold. This large variation between different samples confirms the need to use the present standardization methods to ensure consistent and properly characterized biomass for consumers and for future scientific research.
See more in PubMed
Applequist WL, Miller JS. Selection and authentication of botanical materials for the development of analytical methods. Anal. Bioanal. Chem. 2013;405:4419–4428. doi: 10.1007/s00216-012-6595-1. PubMed DOI
Shipkowski KA, et al. Naturally complex: Perspectives and challenges associated with botanical dietary supplement safety assessment. Food Chem. Toxicol. 2018;118:963–971. doi: 10.1016/j.fct.2018.04.007. PubMed DOI PMC
Landis SC, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature. 2012;490:187–191. doi: 10.1038/nature11556. PubMed DOI PMC
Tomaselli L, Palandri RM, Tredici MR. On the correct use of the Spirulina designation. Algol. Stud. Archiv für Hydrobiol. 1996;83:539–548.
Komárek J, Lund JW. What is «Spirulina platensis» in fact? Algol. Stud. Archiv für Hydrobiologie. 1990;85:1–13.
Nowicka-Krawczyk P, Muhlsteinova R, Hauer T. Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria) Sci. Rep. 2019;9:694. doi: 10.1038/s41598-018-36831-0. PubMed DOI PMC
Chacón-Lee T, González-Mariño G. Microalgae for “healthy” foods—Possibilities and challenges. Compr. Rev. Food Sci. Food Saf. 2010;9:655–675. doi: 10.1111/j.1541-4337.2010.00132.x. PubMed DOI
Ciferri O. Spirulina, the edible microorganism. Microbiol. Rev. 1983;47:551–578. doi: 10.1128/mr.47.4.551-578.1983. PubMed DOI PMC
Ahsan, M., Habib, B., Parvin, M., Huntington, T. C. & Hasan, M. R. A review on culture, production and use of spirulina as food for humans and feeds for domestic animals (2008).
Capelli B, Cysewski GR. Potential health benefits of spirulina microalgae. Nutrafoods. 2010;9:19–26. doi: 10.1007/BF03223332. DOI
Ratha SK, Renuka N, Rawat I, Bux F. Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition. 2021;83:111089. doi: 10.1016/j.nut.2020.111089. PubMed DOI PMC
Pugh ND, et al. Oral administration of a Spirulina extract enriched for Braun-type lipoproteins protects mice against influenza A (H1N1) virus infection. Phytomedicine. 2015;22:271–276. doi: 10.1016/j.phymed.2014.12.006. PubMed DOI
Food Chemicals Codex (FCC) monograph # 2181. Published by the United States Pharmacopeia (USP) and the National Formulary (NF). Accessed on June 23rd, 2020.
Nielsen CH, et al. Enhancement of natural killer cell activity in healthy subjects by Immulina(R), a Spirulina extract enriched for Braun-type lipoproteins. Planta Med. 2010;76:1802–1808. doi: 10.1055/s-0030-1250043. PubMed DOI
Meager A. Measurement of cytokines by bioassays: Theory and application. Methods. 2006;38:237–252. doi: 10.1016/j.ymeth.2005.11.005. PubMed DOI
Komárek J. Cyanoprokaryota 2—Teil/2nd part: Oscillatoriales. Susswasserflora von Mitteleuropa. 2005;19:1–759.
Gomont, M. A. Monographie des Oscillariées:(Nostacacées Homocystées). Vol. 15 (Masson, 1893).
Mühling M, Belay A, Whitton BA. Variation in fatty acid composition of Arthrospira (Spirulina) strains. J. Appl. Phycol. 2005;17:137–146. doi: 10.1007/s10811-005-7213-9. DOI
Cohen Z, Vonshak A, Richmond A. Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry. 1987;26:2255–2258. doi: 10.1016/S0031-9422(00)84694-4. DOI
Xue C, et al. Molecular species composition of glycolipids from Sprirulina platensis. Food Chem. 2002;77:9–13. doi: 10.1016/S0308-8146(01)00315-6. DOI
Ljubic A, Safafar H, Holdt SL, Jacobsen C. Biomass composition of Arthrospira platensis during cultivation on industrial process water and harvesting. J. Appl. Phycol. 2018;30:943–954. doi: 10.1007/s10811-017-1332-y. DOI
Hultberg M, Lind O, Birgersson G, Asp H. Use of the effluent from biogas production for cultivation of Spirulina. Bioprocess. Biosyst. Eng. 2017;40:625–631. doi: 10.1007/s00449-016-1726-2. PubMed DOI PMC
Hena S, Znad H, Heong K, Judd S. Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Res. 2018;128:267–277. doi: 10.1016/j.watres.2017.10.057. PubMed DOI
Compositional guideline: Arthrospira platensis. https://www.tga.gov.au/compositional-guideline/arthrospira-platensis (2011).
Hantke K, Braun V. Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. Eur. J. Biochem. 1973;34:284–296. doi: 10.1111/j.1432-1033.1973.tb02757.x. PubMed DOI
Nguyen MT, Gotz F. Lipoproteins of gram-positive bacteria: Key players in the immune response and virulence. Microbiol. Mol. Biol. Rev. 2016;80:891–903. doi: 10.1128/MMBR.00028-16. PubMed DOI PMC
White JR, et al. Best practices in bioassay development to support registration of biopharmaceuticals. Biotechniques. 2019;67:126–137. doi: 10.2144/btn-2019-0031. PubMed DOI
Balachandran P, Pugh ND, Ma G, Pasco DS. Toll-like receptor 2-dependent activation of monocytes by Spirulina polysaccharide and its immune enhancing action in mice. Int. Immunopharmacol. 2006;6:1808–1814. doi: 10.1016/j.intimp.2006.08.001. PubMed DOI
Nakayama H, Kurokawa K, Lee BL. Lipoproteins in bacteria: Structures and biosynthetic pathways. FEBS J. 2012;279:4247–4268. doi: 10.1111/febs.12041. PubMed DOI
Pferschy-Wenzig E-M, Bauer R. The relevance of pharmacognosy in pharmacological research on herbal medicinal products. Epilepsy. Behav. 2015;52:344–362. doi: 10.1016/j.yebeh.2015.05.037. PubMed DOI
Krause E, et al. Biological and chemical standardization of a hop (Humulus lupulus) botanical dietary supplement. Biomed. Chromatogr. 2014;28:729–734. doi: 10.1002/bmc.3177. PubMed DOI PMC
Piersen CE, et al. Chemical and biological characterization and clinical evaluation of botanical dietary supplements: A phase I red clover extract as a model. Curr. Med. Chem. 2004;11:1361–1374. doi: 10.2174/0929867043365134. PubMed DOI
Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): A morphological and molecular approach. Appl. Environ. Microbiol. 2003;69:5157–5169. doi: 10.1128/AEM.69.9.5157-5169.2003. PubMed DOI PMC
Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991;173:697–703. doi: 10.1128/jb.173.2.697-703.1991. PubMed DOI PMC
Muhlsteinova R, Hauer T, De Ley P, Pietrasiak N. Seeking the true Oscillatoria: A quest for a reliable phylogenetic and taxonomic reference point. Preslia. 2018;90:151–169. doi: 10.23855/preslia.2018.151. DOI
Nübel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 1997;63:3327–3332. doi: 10.1128/AEM.63.8.3327-3332.1997. PubMed DOI PMC
Cavonius LR, Carlsson N-G, Undeland I. Quantification of total fatty acids in microalgae: Comparison of extraction and transesterification methods. Anal. Bioanal. Chem. 2014;406:7313–7322. doi: 10.1007/s00216-014-8155-3. PubMed DOI PMC
Kim B, Im H, Lee JW. In situ transesterification of highly wet microalgae using hydrochloric acid. Biores. Technol. 2015;185:421–425. doi: 10.1016/j.biortech.2015.02.092. PubMed DOI
Otles S, Pire R. Fatty acid composition of Chlorella and Spirulina microalgae species. J. AOAC Int. 2001;84:1708–1714. doi: 10.1093/jaoac/84.6.1708. PubMed DOI
Tudor C, Gherasim EC, Dulf FV, Pintea A. In vitro bioaccessibility of macular xanthophylls from commercial microalgal powders of Arthrospira platensis and Chlorella pyrenoidosa. Food Sci. Nutr. 2021;9:1896–1906. doi: 10.1002/fsn3.2150. PubMed DOI PMC